
Chapter 7 

Critical Retardation Effects and Slow Relaxations 

1. The problem of slow relaxations 

From the viewpoint of experimental workers, slow relaxations are аЬ
normally (i.e. unexpected) slow transition processes. The time of а transition 
process is determined ав that of the transition from the initial state to the 
limit (t --+ (0) regime. The limit regime itself сап Ье а steady state, а limit 
cycle (а self-oscillation process), а strange attractor (stochastic self-oscilla
tion), etc. 

Inevitably, the "limit" regime of the process is observed in experiments 
with finite accuracy. It is possible that the experiment was too short in time, 
and if the period of this experiment is sufficiently long, the regime would 
change considerably. Strictly speaking the limit transition t -> 00 holds only 
for а mathematical model. 

Similarly, the achievement of the limit regime (the end of the transition 
process) is only determined with finite accuracy. This circumstance will Ье 
used constantly in what follows. 

The most difficult problem is the adequate determination ofthe "abnorm
аНу" (i.e. unexpected) slow transition process. For this purpose, we must 
imagine the simplest system of expectations. It is based оп the hypotheses 
about reaction mechanisms. А catalytic reaction is represented ав а сот
bination of elementary steps (see Chap. 3). We admit воте hypotheses con
cerning values ofthe corresponding rate coefficients. Typical concentrations 
of gas-phase substances and of surface compounds are also assumed to Ье 
known. One сап also introduce а concept ofthe characteristic time of а step. 
For example, the characteristic time for the step А +± В сап Ье determined 
ав l/(k+ + k-), where k+ and k- are the rate constants for the direct and 
reverse reactions. For the reaction А + В -> С one сап introduce two 
characteristic times: l/kCA and l/kCB , where СА and СВ are the characteris
tic concentrations of А and В. 

Hence, as а rule, the researcb. worker has воте knowledge (воте hypothe
sis) about the base steps and their characteristic times. 

One refinement is necessary here. If а transition process is examined for 
the reactor as а whole, the equations of the steps include аН the reacting 
substances. If the transition process is examined only оп the surface, the 
equations of the steps contain only surface compounds, and the concentra
tions of gas-phase substances аге included in the rate constants. 

Let some transition process proceed much slower than might have been 
expected in terms of the hypotheses about characteri§tic times for the steps 

References рр. 380-382 



362 

(slow relaxation). Every time slow relaxations are observed in experiments, 
there arises а question: what are the reasons for them? То answer this 
question in воте specific савев, it is useful to have а list ofprobable reasons 
for slow relaxations of catalytic reactions. 

Difficulties of the interpretation of experimental data оп the kinetics of 
heterogeneous catalytic reactions are conditioned Ьу the following. 

(1) One сап observe only an insignificant part of substantial variables 
(difficulties in the experimental determination of concentrations for inter
mediates during the reaction process are well known). 

(2) In addition to kinetic processes, the contribution of воте "side" 
processes сап also Ье essential. Among these processes there are the dif
fusion of reactants into the catalyst bulk and any effect of the reaction 
media оп catalysts (catalytic corrosion, reconstruction of а catalyst surface 
layer caused Ьу reaction, etc.). 

Side processes often proceed more slowly than kinetic reactions, from 
which а first explanation follows: slow relaxations are induced Ьу the effect 
of side processes [1, 2]. 

Another variant of the explanation is: the list of substances and the 
reaction mechanism is incomplete and во slow relaxations are explained Ьу 
the slow steps that have not been taken into account. It must Ье emphasized 
that slow transition processes сап also Ье caused Ьу slow steps, in those 
савев in which the steady state rate of а catalytic reaction is high. This сап 
Ье exemplified Ьу two linear catalytic cycles connected Ьу а slow step 

In this саве the steady state rate is controlled Ьу the rate constants of the 
A1 -> B1 -> C1 -> А! cycle, whereas the transition process is limited Ьу the 
slow reaction connecting cycles. 

Finally, we сап suggest а third explanation: fast steps сап сотрове а 
mechanism with slow relaxations. Indeed, nothing suggests that the relaxa
tion time for а set of chemical kinetic equations is directly dependent оп the 
characteristic times of the individual steps. But it cannot Ье treated ав а 
reason for slow relaxations. It is only а simple indication for the possibility 
of finding висЬ reasons here. Let ив now indicate the reasons according to 
which fast steps сап сотрове а mechanism with slow relaxations. 

First, there must Ье а large number ofreacting substances. Even for linear 
reaction mechanisms, there does not exist а simple "rule of adding" charac
teristic times for the steps forming а reaction mechanism. For example, let 
ив consider а linear irreversible cycle А1 -> А2 -> ... -> Аn -> А! in which 
аН the constants are the вате and equal to k. The vector of concentrations 
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с сап Ье described Ьу the equation dc/dt = кс. The matrix К has the 
eigenvalues 

А! k(1 1/n 
- 1) 

k {
.2nl } 

ехр z~-l 1 = 1, ... , n 

The rate of relaxation is determined Ьу the non-zero value the 1 ReA 1 

closest to zero, which is equal to. 

k( 1 - сов 2:) ~ 2k(I0
2 

at high n. The corresponding characteristic time, = 1/1 ReA 1 increases with 
increasing n ав n2

• 

Secondly, in воте савев the presence of high rate constants leads to slow 
transition processes. The simplest example is 

k;,J, k 
С, IA~B 

kff) 

Non-zero eigenvalues are determined explicitly ав 

А - k j + k2 + kз j [(k k k ) _ 4k k ]1/2 
1, 2 - - 2 ± 2 1 + 2 + з 1 3 

Let the constant k2 Ье very high: k 2 ~ k 1 , kз . Then we obtain 

А ~ _ kj + k 2 + kз + [k1 + k 2 + kз _ k 1 kз ] 
1, 2 2 - 2 k

1 
+ k

2 
+ kз 

In this саве the eigenvalue closest to zero and the respective relaxation 
times will Ье 

k1 +k2 +kз 
k1 kз 

If k2 -> W (k1 and kз being restricted), we will obtain А -> О, , -> оо. 
Finally, let ив discuss the most important reason, from our point ofview, 

that, in particular, саивев slow relaxations in СО oxidation over Pt. 
If а system of chemical kinetic equations is non-linear and the reaction 

mechanism includes an interaction step between various substances, 
bifurcations are possible, They account for the effects of critical retardation. 
Let ив illustrate this Ьу the simplest (non-chemical) example. Consider the 
differential equation 

х = -rxх-хЗ 
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For а ~ О it has only опе fixed point at х = О. For а ~ О this point is stable, 
but for а < О the equation will have three fixed points [х = О, ± (- a1

/
2
)] and 

the point х = О is unstable. In the савев а > О and а ---+ О, the relaxation of 
the system towards the point х = О Ьесотев sti11 slower. The solution tends 
tozeroasexp(- at)[morepreciselyx(t) = ехр(- at)(aA/1 - Ae-2<xt)l)~where 
А = x~/(xa + x~), ха = х(О)] tends to zero. At а point of bifurcation (а = О), 
the equation reduces to х = - х3 , and the solution tends to zero more slowly 
than апу exponent x(t) = 1/[2(t - с)Р/2 where с is а constant. 

In the саве of steady state bifurcations, certain eigenvalues of the linear· 
approximation matrix reduce to zero. If we consider relaxations towards а 
steady state, then near the bifurcation point their rates are slower. This 
holds for the linear approximation in the near neighbourhood of the steady 
state. Similar considerations are also valid for limit cycles. But is it correct 
to consider the relaxation of non-linear systems in terms of the linear 
approximations? То Ье more precise, it is necessary to ask а question as to 
whether this consideration is sufficient to get to the point. Unfortunately, it 
is not since local problems (and it is these problems that сап Ье solved in 
terms of the linear approximations) are more simple than global problems 
and, in real systems, the trajectories of interest are not always localized in 
the close neighbourhood of their attractors. 

Here we face а strange situation. Until recently there was по theory of 
transition processes in dynamic systems. We observe а sharp contrast with 
the theory of limit behaviour that was the subject of а large number of 
investigations [3-12]. If воте data concerning transition processes were 
reported, they were largely а secondary product of studying the limits 
t ---+ 00. 

То interpret the problem under discussion concerning slow relaxations in 
chemistry, it was necessary to clarify what must Ье regarded ав slow relaxa
tions of dynamic systems (i.e. to introduce воте reasonable definition). In 
addition, it was necessary to find connections of slow relaxations with 
bifurcations and other dynamic peculiarities. This has Ьееп done Ьу Gorban' 
et al. [13--19]. 

In this chapter we wi11 suggest а theory of transition processes and slow 
relaxations in dynamic systems. The inclusion of such mathematical вес
tions to а book оп chemical kinetics is dictated Ьу the necessity to un
derstand the details of slow transition processes in the аЬвепсе of а сот
prehensive and clear representation of the theory of slow relaxations. 

2. The limit behaviour of dynamic systems 

Here we must make а great jump into воте generalities of our presenta
tion. То discuss reasons for the slow transition processes in non-linear 
systems, we do not need the formalism of chemical kinetics. То begin with 
we need very little: а concept about the phase space Х and the time shift Т/, 



365 

that is the transforming "Х now" into "Х after the time t". 80 far we do not 
even need differential equations to describe the system. We shall иве directly 
their solutions specified Ьу the Т mapping. 

For the kinetic equations с = f(c) let ив consider а reaction polyhedron 
D in the phase врасе Х. For the point х Е D and for t > О the value of Tt(x) 
will Ье determined ав Т,(х) = c(t, х), where си, х) is the solution of the 
equations с = f(c) with the initial conditions с(О) = х. 

The Т mapping is not given analytically from the beginning. It is deter
mined with the help of the solution of а system of differential equations. In 
this вепве we do not have it, but we сап specify and research general 
properties of Т. 

The language applied is poorer and hence is more simple than that of the 
theory of differential equations. It is the language of topological dynamics 
[3-7J. Let ив introduce the main concepts required here and in what follows. 
Х is the compact metric врасе (to Ье more definite, it is а closed restricted 

subset of я
n

). Let р(х, У) Ье the distance between the points х and У. For 
t > О, Tt is the continuous one-to-one mapping of Х to Х (time shift) and 
То = id (identity mapping): то(х) = х. 

(1) 

The equality (1) теапв that, after shifting the system for t and then for (', we 
will obtain а system shifted for t + ('. The function 1;(х) is continuous 
relative to the totality of arguments t and х. 

For х Е Х, the function that puts each t Е [О, 00 J in correspondence with 
the point Т,(х) is called x-motion. For certain ХЕХ this function сап also Ье 
extended to the negative value of t, i.e. if for certain УЕХ and t :;;. О the 
condition Т,(у) = х holds, then we тП аввите that Т_,(х) = у. In what 
follows we will иве this extension without additional explanation. То avoid 
misunderstanding, it must Ье remembered that 1'_, is not determined 
throughout the whole Х (in contrast to 1;, t > О). x-Motion will Ье called а 
whole if 1; (Х)ЕХ is determined throughout the whole time axis tE( - 00, (0). 
А positive x-semitrajectory is defined ав the set (а curve){1;(x)/tE[O, оо)}. 

If the x-motion is а whole, then the negative semitrajectory {1;(X)/tE( - 00, 

О]} has also Ьееп determined. The union ofpositive and negative semitrajec
tories is called а whole trajectory. 

The point УЕХ is called а w-limit for the x-motion if there exists such а 
sequence t i ---> 00 that 

(2) 

А set of the w-limit points of the x-motion is called а w-limit set. We will 
denote it ав ш(Х). In terms of the suggested compactness of Х and continuity 
of Т, it follows that, for апу ХЕХ, the w-limit set ш(х) is non-void. 

Ifthe x-motion is whole, then we define a-limit points for it. The pointYEX 
is called ап a-limit point for the whole x-motion if there exists such а 
sequence of ti ---> 00 that 
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(3) 

А set of cx-limit points for the whole x-motion will Ье denoted ав сх(Х). For the 
whole x-motions, сх(х) will Ье non-void. 

If ХЕСо(х), the x-motion is called Р+ -stable (positively Poisson-stable). 
Ifthe x-motion is whole, not Р+ -stable [хфw(х)] and сх(х) n ш(х) =1= ф, then 

the x-trajectory will Ье called а loop. Аn example of а loop оп the plane is 
а loop of the sepatrix that is а trajectory going from а singular point and 
back to it. Another example is а homoclinic trajectory for which the вате 
saddle limit cycle is both а cx-limit and аn w-limit set. 

It is possible to introduce аn w-limit set of the whole system ав а union of 
w-limit sets for individual points 

(4) 

In what follows we will often consider systems that are parametrically 
dependent (physical parameters will теаn temperature, pressure, inlet соn
centrations ofreactants, etc.). А vector ofthe parameters will Ье denoted Ьу 
k and the set К is assumed to Ье compact (а closed bounded subset I(). 

For every k there exists а definite mapping Т. Let ив denote its value ав 
т (х, k). The function Т,(х, k) is assumed to Ье continuous in the union of 
a{.guments. The x-motion for а given k will Ье termed аn (х, k)-motion. The 
w-limit set of the (х, k)-motion will Ье denoted ав ш(х, k). If the (х, k)-motion 
is whole, its cx-limit set will Ье denoted ав сх(х, k). At а given k, the w-limit set 
for the whole of system (4) is denoted ав wT(k). 

The w-limit set is а very natural object from the qualitative viewpoint. 
ш(х, k) is the set towards which the x-motion tends for t -> 00 (for а given k). 
Therefore it веетв а natural formalization of the concept of а ''limit regime". 
The w-limit set сап consist of оnе fixed point (steady-state) and points 
belonging to оnе limit cycle. But its structure сап also Ье more complex, i.e. 
it сап include several fixed points and cycles, various surfaces, strange 
attractors, etc. 

3. Relaxation times. Determination of slow relaxations 

System relaxation сап Ье represented ав а motion from the initial state х 
towards the w-limit set ш(х, k). Relaxation time сап Ье defined ав the time of 
this motion. But here we have several possibilities. 

I,et ив take воте в > О ав the accuracy for the achievement of а limit set. 
Т1 (х, k, в) will Ье the time for the first entry of the system from its initial state 
into the s-neighbourhood of ш(х, k)(for а given k). After then the system сап 
leave the s-neighbourhood and then enter it again and do this several (еуеn 
таnу) times. Finally, the (х, k)-motion will constantly remain in this neigh
bourhood, but this process сап take more time than it needed for the first 
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entry. Therefore let us introduce the time for the residence of (х, k)-motion 
outside the e-neighbourhood of О)(х, k)['2(X, k, г)] and the time for its final 
entry into this neighbourhood [tзс~, k, 8)]. Непсе 

'I(Х' k, г) 

'2(Х' k, 8) 

,з(х, k, 8) 

inf {t > О/р[Т,(х, k), О)(х, k)] < г} 

mes{t> O/p[T/x,k),O)(x,k)] ~ 8} 

inf {t > о/р[т,,(х, k), О)(Х, k)] < г, if t' > t} 

(5) 

where mes is the Lebesgue measure (оп а straight line it is length) and р is 
the distance in Х [the distance from the point (у) towards the set (Р) is 
determined as р (у, Р) = inf р G, г)]. 

-;ЕР --"- --"-
At the end of Sect. 2, we agreed that the relaxation of (х, k)-motion is the 

tendency to шСх, k) that is its w-limit set. But in this case another viewpoint 
is possible. W е сап treat wT(k) as а set of limit regimes and define relaxation 
ав а motion towards it. Then it is not important which of the w-limit points 
the (х, k)-motion has Ьееп approached, either its own [from ш(х, k)] or 
foreign [from O)G, k) for у -# Х]. Of importance is the approach to the 
complete set of limit regimes wT(k). In this connection we introduce three 
relaxation times [analogrus to '1,2, З of eqns. (5)]. 

I]I(X, k, 8) inf{t > О/р[Т,(х, k), wT(k)] < 8} 

1]2(X, k, г) 

I]з(Х, k, г) 

тев{ t > 0/ р[т, ,(х, k), wT(k)] ~ г} 

inf{t > О/р[Т,,(х, k), wT(k)] > г, if t' > t} 

(6) 

Let ив now define what must Ье considered ав а slow relaxation process. 
То judge whether the relaxation time is large or втаll, it must Ье compared 
with воте specified time scale. But the system has по such specified time 
scale. Besides, with decreasing г, relaxation times сап Ьесоте arbitrarily 
large еуеп for the motion towards the only stable fixed point. 

For each initial state Х and k, г values аll relaxation times are finite. But 
their set сап Ье unrestricted for kEK, ХЕХ (but for fixed г > О). It is in this 
case that we will speak about slow relaxations. 

As the simplest example, let ив consider the differential equation 
х = х2 

- 1 оп the segment Х = [- 1, 1]. The point х = - 1 is stable and 
the point х = 1 is unstable. For апу fixed <: > О, г < 1/2 the relaxation times 
'1,2, 3' I]з ~ 00 at х ~ 1, х < 1, since x-motion delays пеаУ the fixed point. Iп 
this system, the times 1]1 and 1]2 are restricted for апу г > О. 

Definition 1. We will suggest that the system has '; - (1];) slow relaxations 
if, for some <: > О, the function 'i(X, k, S)[l]i(X, k, г)] is not restricted from 
аЬоуе in Х х К, l.e. for апу t > О there соиЫ Ье found such ХЕХ, kEK that 
'i(X, k, г) > t[l]i(X, k, г) > t]. 

Relationships between various types of slow relaxations are determined 
Ьу the inequalities 'i ~ I]i, '1 ~ '2 ~ ТЗ, 1]1 ~ 1]2 ~ 1]з· If there are 1]1 slow 
relaxations, аll the others exist. Some examples сап Ье given for the exist-
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епсе of 1'/2 slow relaxations without 1'/1 slow relaxations. Directly from the 
definitions and the compactness of Х it follows that, in а separate system (/i 
is fixed) 1'/1 slow relaxations are impossible. But for 1'/2 slow relaxations this 
is not valid. 

Example 1. ТЬе existence of 1'/2 slow relaxations in the system that is 
independent of the parameter. Let us consider а system оп the plane in the 
circle х2 + у2 ~ 1, specified in the polar coordinates Ьу the equations 

- r (1 - r)(r сов Ф + 1) 
(7) 

ф r сов Ф + 1 

ТЬе complete w-limit set consists of two fixed points r = О and r = 1, Ф = n 
[Fig. l(а)]. ТЬе boundary of the circle consists of а fixed point r = 1, Ф = n 
and а loop going from this fixed point and returning to it. If the initial point 
of the motion (ro, Фо) lies near the boundary inside the circle (ro < 1), the 
motion is delayed for а long time near the boundary. In this саве it periodic-

(а) ( Ь) 

(е) (d) 

Fig. 1. Phase patterns of (а) system (7); (ь) system 8; (е) system (9); (d) system (10). 
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аНу enters the close neighbourhood ofthe ш-limit point r = 1, Ф = п, во that 
1'/1 is finite for ro --+ 1. But the residence time 1'/2 outside the close neighbour
hood of this point tends to 00 for ro --+ 1. 

Several simple examples given below will illustrate the existence of оnе 
type for slow relaxations without others. We will not go into detail to 
explain why these examples deal with оnе or another type of slow relaxation. 
It сап Ье вееn from the equations and phase patterns (Fig. 1). 

Example 2. There exist 1'/3 but по 1'/2 slow relaxations. In the аЬоуе example 
let ив replace the boundary 1001> Ьу аn unstable limit cycle 

r = - r(l - r) 
(8) 

ф = 1 

Now the complete ш-limit set шт includes the overall boundary circle and the 
point r = О [Fig. l(Ь)]. Residence time outside the 8 neighbourhood of шт is 
restricted for аnу 8 > О. But I'/з[(rо, Фо), 1/2] --+ 00, if ro --+ 1, ro =1 1. 

Example 3. There exist 1"1 but по 1'/2, 3 slow relaxations. Let ив consider the 
system in the rin~ 1/2 ~ х2 + у2 ~ 1. 

(1 - r)(r сов Ф + 1)(1 - r сов Ф) 
(9) 

ф (r сов Ф + 1)(1 - r сов Ф) 

Here the complete ш-limit set шт is the complete circle r = 1 [Fig. l(С)] For 
ro = 1, Фо --+ п, Фо > п, the relaxation time 1"1 (ro , Фо, 1/2) --+ 00, since for 
these initial points ш(rо , Фо) = {(r = 1, Ф = О)}. 

Example 4. There exist 1"з but по 1"1,2 and по 1'/3 slow relaxations. Let ив 
modify example 3 in the ring. W е will take only оnе fixed point оп the 
boundary circle r = 1 [Fig. l(d)] 

(1 - r)(r сов Ф + 1) 
(10) 

ф r сов Ф + 1 

In this саве for ro = 1, Фо --+ п, Фо > п, the relaxation time 1"з(rо , Фо, 1/ 
2) --+ 00. Relaxation times 1"1, 2 remain restricted, since now the motion delays 
near its ш-limit set (in contrast to example 3). 

Example 5. There exists 1"2, but по 1"1 and по 1'/2 slow relaxations. Here we 
will give аn example for the system оп а compact set that is not а variety 
(since Х is а compact set, we will иве this generality to simplify our problem). 
W е will first consider а system in the ring х2 + у2 ~ 2, determined Ьу the 
equations 

- r(l - r)2 [(r cos Ф + 1)2 + ~ sin Ф] 
(11) 

ф (r сов Ф + 1)2 + ~ sin2 Ф 
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(а) (Ь) 

Fig. 2. Phase pattern of system (1l)(а) without identification (pasting together) of fixed points; 
(ь) after identification. 

For this system the ш-limit sets are [Fig. 2(а)] 

{

CirCUmference r = 1, at ro > 1 

point (r = 1, Ф = n), at ro = 1 

point (r О), at ro < 1 

Let us identify the fixed points (r = 1, Ф = n) and (r = О) [Fig. 2(Ь)]. We will 
see that for ro ~ 1, ro < 1, the relaxation time T 2(rO, Фо, 1/2) ~ со, though Т1 
and 112 are restricted. In this case the time Тз is unrestricted. 
ТЬе majority ofthe above examples are non-rough (structurally unstable) 

systems. ТЬе rough dynamic systems оп the plane cannot demonstrate the 
properties shown Ьу the above examples. If Tt is specified Ьу а rough in
dividual (without parameters) system оп the plane, there cannot exist 111' 112 
slow relaxations and Т1, 2, З and 11з slow relaxations сап take place only simul
taneously. This сап Ье confirmed Ьу the results given below and the data of 
some classical studies concerning smooth rough two-dimensional systems 
[20, 21]. 

4. Bifurcations (explosions) of limit sets 

Here we treat bifurcations as peculiarities in the dependences ш(х, k) оп 
the initial х and the parameters k and of шт(k) оп the parameters k. This is 
а somewhat original viewpoint since, as usual, the dependence of the limit 
set оп the initial data is not considered when studying bifurcations and 
attention is concentrated оп its dependence оп the parameters. ТЬе neces
sity to consider peculiarities of the ш(х, k) function is due to our aim of 
examining slow relaxations. 
ТЬе same aim also dictates the overall variety of peculiarities. Among the 
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overall variety of continuity violations for ш(х, k), wT(k) we have selected 
only two: the appearance of new limit points and of new limit sets. 

The appearance of new limit points consists of the following. Let there 
exist а sequence of such Xi -> х*, ki -> k* for which ш(х*, k*) has such а 
point У that we obtain 

(12) 

for а certain о > о and every value of i. In this case we сап say that Ш(Х, 
k)-bifurcations take place. The point (х*, k*) will Ье called а point ofthe ш(х, 
k)-bifurcation. In а similar way, if ki -> k* but there exists such YEWT(k*) 
that 

р[у, wT(kJ] > о (13) 

for а certain (j > о and every value of i, we сап say that the w(k)-bifurcation 
takes place. The point k* will Ье called а point of the w(k)-bifurcation. 

For the ш(х, k) and w(k)-bifurcations, the following fact will Ье essential. 
In the limit set corresponding to the bifurcation point (х*, k*)(or k*) there 
exists such a~o.int у which is localized at а finite distan~e f':om th~ wh~le of 
the sets W(xi) kJ[or w(kJ] for а certain sequence (Xi' kJ -> (х*, k*)[or 
(k i -> k*)]. The appearance of new w-limit sets consists in the foHowing. Let 
there exist such sequences Х; -> х*, ki -> k* that for every УЕШ(Х*, k*) 

р[у, w(X i , kJ] > (j 

for а certain (j > о and every value of i. In this case we say that there exist 
Щх, k)-bifurcations. In а similar way, if there are such sequences ki -> k* 
and а point Х*ЕХ that for every УЕШ(Х*, k*) we obtain 

р[у, w(kJ] > (j 

for а certain (j > о and every i, we сап say the Q(k)-bifurcations take place. 
Q-bifurcations are different for w-bifurcations. For the former at а finite 

distance fromthose limit sets that correspond to the converging sequences 
[(Xi' kJ or k;J we сап find аН the points of а certain limit set ш(х*, k*) and 
not only some points of ш(х*, k*)[or w(k*)]. 

The fact that w-bifurcations are possible witho~t Q-bifurcations is not 
evident, and we therefore give the following example. 

W е will consider the example in which Ш(Х, k)-bifurcations exist but there 
are по О(х, k)-bifurcations. Let us first consider the system in the core (from 
нЗ) х2 + у2 ::о:; Z2; О ::о:; z ::о:; 1. Let it Ье set Ьу the equations (in the cylindric 
coordinates: Х = r cos ф, у = r sin ф) 

r r(2z - r - 1)2 - 2r(1 - r)(l - z) 

ф r cos Ф + 1 (14) 

z - z(l - Z)2 
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(а) (Ь) 

Fig. 3. ш(х, k). but по Щх, k).bifurcation. (а) Phase pattern of system (14); (ь) as (а) after 
identification of аН the fixed points. 

For t -> iX) the solutions of eqns. (14) behave as follows (depending оп the 
initial conditions). If О ::;; z(O) ::;; 1, О < r(O) ::;; z(O), then for t -> iX) the sol
ution tends to its unique w-limit point, which is а fixed point z = r = О. If 
z(O) = 1, О < r(O) < 1, then for t -> iX) the solution is "winding" inside 
around the circle z = r = 1. Ifthe initial point lines оп this circ1e [z(O) = 1, 
r(O) = 1], then the w-1imit point is unique: z = 1, r = 1, Ф = n. In case 
z(O) = 1, r(O) = О, the w-limit point is a1so unique: z = 1, r = О. The phase 
pattern is represented in Fig. 3(а). 

Let us consider а sequence of the соnе points (rn, Фn, zn) -> (r*, ф*, 1), 
r* #- О, 1, Zn < 1 for every value of n. For every point of the sequence, the 
w-limit set consists of аn unique point and for (r*, ф*, 1) of а circ1e. If we 
identify аll the equilibrium state [Fig. 3(Ь)], we will have ш(х, k)-bifurcations 
but по Щх, k)-bifurcations. 

5. Dynamic factors for slow relaxations 

Let us start with some simple considerations and three explicit1y inte
grated examp1es. We сап immediately give two simp1e mechanisms for the 
generation of slow relaxations. It is а delay of the motion near the unstable 
fixed point and (for the systems that are dependent ofthe parameter) а de1ay 
of the motion in the region, where at small variations of the parameter there 
appears а fixed point. 

The delay near the unstable fixed point is observed in the system 
х = х2 

- 1. We will consider it over the segment [ -1,1]. Here, there are two 
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fixed points х = ± 1. The point х = -1 is stable, whereas the point х = 1 
is unstable. The equation is integrated in the explicit form 

x(t) 

А = 

1 - А e2t 

1+Ae2t 

1 - Ха 

1 + Ха 
(15) 

where Ха = х(О) is the х value at the initial moment. If Ха =1= 1 then after воте 
time the motion will enter the с: neighbourhood of the point х = - 1 (for апу 
с: > О). This will happen after the time 

'3(Ха ' с:) 

1'/3(Xa, с:) 

1 с: 1 1 - Ха 
- -ln-- - -ln--

2 2 - с: 2 1 + Ха (16) 

Naturally, it is assumed that Ха > -1 + е. Let е Ье fixed and Ха -+ 1. Then 
'2 and 1'/3 tещLtо infinity ав - (1/2) In(l - Ха)' 

Motion delay in the region where, for втаll variations of the parameter, 
а fixed point arises, is observed in the system х = (k + х2)(х2 

- 1) (which 
depends оп the parameter k). If k > О, then again there are only two fixed 
points, at х = ± 1. For k = О а third point appears at х = О. For k < О it 
decomposes into two points: х = ± (1 k /)112. Let ив consider the саве when 
k > О. The time of the motion form Ха to Х1 сап Ье found in the explicit form 
(хо > х 1 ; ха, Х1 =1= ± 1) 

1 1 - Х1 1 1 - Ха 1 ( Х1 Ха) t(xa х) = - ln --- - - ln --- - - arctan - - arctan-
, 1 2 1 + х! 2 1 + Ха k 112 k k 

In the саве с: > О, ХО Е( - 1 + с:, 1 - с:), the relaxation times for а given system 
are determined ав 'i(Xa, k, е) = l'/i(Xa, k, с:) = t(xa, - 1 + с:), i = 1, 2, 3. If 
х > О, then for k -+ О we will have arctan (x/k I12

) -+ - n/2. Непсе if хо > О, 
с: < 1, then for k -+ О, every 'i, I'/i -+ со ав n/kI12

• 

Slow relaxations are connected with bifurcations (explosions) of the 
w-limit sets since they сап Ье caused Ьу the delay near а "foreign" w-limit 
set. А "foreign" set here means the set corresponding to the motion with 
different initial conditions or different (but close) values of the parameters. 
The two simple examples аЬоуе сап illustrate these possibilities. The 
general саве is described Ьу the following theorems. 

Theorem 1. '1 slow relaxations exist in Х х Kif and only ifQ(x, k)-bifurca
tions exist in Х х К. 

Theorem 2. 1'/1 slow relaxations exist in Х х К if and only if Q(k)-bifurca
tions exist in К. 

Relaxation times '1 and 1'/1 are the "shortest" in the system oftimes 'i, I'/i' 

References рр. 380-382 



374 

That is why their existence requires the "strongest" Q-bifurcations. For 
relaxation times 1"2. 3 and 112. 3 there exist по one-to-one relations between slow 
relaxations and bifurcations such as in Theorems 1 and 2. For the existence 
of 1"2 and 112 slow relaxations, it suffices that weaker bifurcations take place. 

Theorem 3. Hthe system has ш(х, k)-bifurcations, 1"2 slow relaxations also 
exist. 

Theorem 4. Hthe system has шт(k)-bifurсаtiопs, then there are also 112 slow 
relaxations. 

There are examples when 1"2' 112' slow relaxations take place without 
bifurcations. 80 far, complete characteristics of these slow relaxations in 
terms of the limit behaviour for а dynamic system (that is dependent оп the 
parameters) has not Ьееп obtained. Only some of the additional sufficient 
conditions have Ьееп defined. 

Theorem 5. Н, in Х for some kEK there exists а whole (х, k)-motion for 
which о:(х, k) <1 ш(х, k), then there exist 1"2 slow relaxations. 

Theorem 6. If, in Х for воте kEK there exists а whole (х, k)-motion for 
which о:(х, k) does not lie entirely in the closure of шт(k) [о:(х, k) <1 шт(k)] , 
then there exist 112 slow relaxations. 

It is possible to give examples (in RЗ ) which show that the conditions of 
Theorems 5 and 6 сап Ье satisfied in the absence of bifurcations. 

For 1"з, I1з slow relaxations, the necessary and sufficient conditions have 
Ьееп obtained in terms of the limit behaviour of dynamic systems. Note that 
the (х, k)-motion is called positively Poisson-stable (Р+ -stable) if ХЕШ(Х, k). 

Theorem 7. 1"з slow relaxations in Х х К exist if and only if at least опе 
of the following conditions is fulfilled. 

(1) There exist ш(х, k)-bifurcations in Х х К. 
(2) For some kEK in Х there exists а whole (х, k)-motion which is not 

positively Poisson-stable, and о:(х, k)nш(х, k) =1= ф. 
Theorem 8. I1з slow relaxations in Х х К exist if and only if at least опе 

of the following conditions is satisfied. 
(1) There exist ш(k)-bifurсаtiопs in К. 
(2) For some kEK in Х there exists а whole (х, k)-motion not intersecting 

the closure of шт(k). 
In theorem 7, condition (2) is satisfied Ьу апу point of the loop (а loop is 

the trajectory starting from воте fixed point and returning to the вате 
point). In theorem 8, condition (2) is satisfied Ьу апу point of the trajectory 
from воте unstable to а stable fixed point (ifthe points ofthis trajectory are 
not ш-liтit points). 

At the end of this section, we will consider individual systems (without 
parameters) and will not point this out especially. 

Let us recall the concept of the non-wandering point. It is such а point 
ХЕХ that for апу to > О (arbitrarily high) and /: > О (arbitrarily low) there 
exist such t. > to and УЕХ that 

р<у, х) < е and р(т,(у), х) < 8 (17) 
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Theorem 9. Let воте system have 1'/2 slow re1axations. Then we сап find а 
non-wandering point Х * ЕХ that does not 1ie in Шт• 

This necessary condition for 1'/2 slow re1axations is not sufficient, which 
сап Ье illustrated Ьу the corresponding examp1es. 

Theorem 10. Let Х Ье connected and Шт Ье disconnected. Then the system 
will have 1'/3 and '1.2. 3 slow re1axations. 

In accordance with theorem 9 and the Pugh 1emma [22], an individua1 
C1 -smooth system "a1most never" has I]~ slow re1axations. 

In the two-dimensiona1 саве (ti,vo variables) "a1most any" C1-smooth 
dynamic system is rough (i.e. at втаll bifurcations its phase pattern deforms 
on1y slight1y without qua1itative variations). For rough two-dimensiona1 
systems, the w-1imit set of every motion is either а fixed point or а 1imit cyc1e. 
The stabi1ity of these points and cyc1es сап Ье checked even Ьу а 1inear 
approximation. Mutua1 re1ationships between six different types of slow 
re1axations for rough two-dimensiona1 systems are sharp1y simp1ified. 

Theorem 11. Let М Ье а smooth compact two-dimensiona1 variety, F а 
C1

-smooth rough dynamic system оп М, Ха connected positive1y invariant 
subset of М (at positive times the motion remains inside Х) and F!- the F 
restriction оп Х. Then Х 

(1) The fact that F1- has '3 slow re1axations means that '1,2 and 1]з slow 
re1axations exist. Х 

(2) F1- has по '3 slow re1axations if and on1y if Xhas one fixed point (and 
по 1imit

X 
cyc1es) or one 1imit cyc1e (and по fixed points). 

(3) 1'/1 2 slow re1axations of F!- are impossible. , Х 

From а practica1 viewpoint it is insufficient to c1aim that slow re1axations 
do exist in а given system. It wou1d Ье ofinterest to determine their probabi1-
ity. Ав а ru1e, one сап naturally introduce воте measure (vo1ume, area) into 
the phase врасе of the systems under research. Let ив denote it ав тев. The 
probabi1ity of slow re1axations сап Ье treated ав а behaviour at high t of the 
functions 

f-li(t, 8) 

8i (t, 8) 

теВ{ХЕХ/,;(Х, 8) > t} 

mes{XEX/l'/i(X, 8) > t} 

w е аввите that 8 is fixed and sufficient1y втаll. The va1ues of f-li and 8; show 
а measure (vo1ume, area) for those initia1 conditions under which the re1axa
tion time is greater than t. 

It is convenient to formu1ate the problem во that its solution wou1d not 
change with smooth changes ofvariables. For examp1e, 1et ив determine the 
limits for 1n f-li(t, 8)/t and 1n 8i (t, e)/t at t ---> 00 (i.e the Lyapunov indices for 
these functions). For smooth rough two-dimensiona1 systems, if е is вит
cient1y втаll we will obtain 

1
· 1n f-ll 2 з(t, 8) 
1т ' , 

<~", t 
1
. 1n 8з и, 8) 
1т --'---

,~'" t 
(18) 
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At sufficiently high t, the functions 81 2 converge to zero. Here n is the 
number of unstable limit motions (points' and cycles) in Х and К; are deter
mined ав follows. Let В)' ... , Вn Ье unstable limit motions lying inside Х. 

(1) Let В; Ье ап unstable node or а focus. Then К; will Ье а trace of the 
matrix for the linear approximation at this point. 

(2) Let В; Ье ап unstable saddle. Then К; will Ье а positive eigenvalue of 
the matrix for the linear approximation at this point. 

(3) Let В; Ье ап unstable limit cycle. Then К; is а characteristic index of 
this cycle (вее ref. 23, р.ll1). 

This result сап Ье generalized for multi-dimensional systems in which а 
limit set for every motion is а fixed point or а limit cycle, linear approxima
tion matrices at fixed points have по eigenvalues in the imaginary axis and 
limit cycles have по multiplicators оп the unit circle. In this саве, К; should 
Ье treated for fixed points ав the sums of those eigenvalues that have positive 
real parts (they are "unstable"), and for limit cycles ав the sums of unstable 
characteristics indices. 

Note that the asymptotes of eqn. (18) include characteristics of those 
unstable regimes near which the motion is delayed. Оп the other hand, in 
terms of the ''linear'' approach to relaxation studies опе must examine the 
characteristics of that steady-state regime towards which the motion соп
verges. These two савев differ significantly. 

6. Taking into account small perturbations and errors оС 
models 

Апу real system is known to suffer constantly from the perturbing effects 
of its environment. Опе сап hardly build а model accounting for аН the 
perturbations. Besides, ав а rule, models account for the internal properties 
ofthe system only approximately. It is these two factors that are responsible 
for the discrepancy between real systems and theoretical models. This dis
crepancy is different for various objects ofmodern science. For example, for 
the objects of planetary mechanics this discrepancy сап Ье very втаН. Оп 
the other hand, in chemical kinetics (particularly in heterogeneous cataly
sis) it cannot Ье negligible. Strange ав it is, taking into consideration such 
unpredictable discrepancies between theoretical models and real systems 
сап simplify the situation. Perturbations "smooth out" воте fine details of 
dynamics. 
А model of perturbed motion сап Ье c;-motions. The time function 

ф(t)(t :;:, О) whose values belong to Х, is caHed c;-motion (10 > О) of the system 
at а given kEK if, for апу to :;:, О and tE[O, с], we have 

(19) 

In other words, if for воте arbitrary point ф(tо) опе would consider its 
motion to Ье due to the dynamic system, the discrepancy between this 
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motion and ф(tо + t) would Ье below е for О :( t :( '[. Here r > О is воте 
duration. It is not very important to know the уаlие of r (опlу the fact that 
it is fixed is of importance) since in what follows we wi11 consider the саве 
е -> О. 

There are two traditional approaches to the consideration of perturbed 
motions. Опе is the study of the motion in the presence of вта11 continuously 
acting perturbations [24-30]; the other is the investigation of fluctuations 
caused Ьу втаll random perturbations [31-34]. Our results were obtained in 
terms of the former approach but'using воте ideas of the latter. 

e-motions have Ьееп studied previously in differential dynamics largely in 
connection with Аповоу theorem about e-trajectories and its applications 
[35-39]. 

When studying perturbed motions, every point х is juxtaposed not опе 
x-motion but а ''bundle'' of e-motions Ф starting from this point [ф(О) = х] for 
а given value of the parameter k. Every e-motion ф(t) is associated with ап 
ш-limit set ШеФ). It consists of those points УЕХ for which опе сап find such 
а sequence ti -> со, ав ф(tJ -> у. Every ХЕХ (initial value) at а given уаlие 
ofthe parameter k is associated with the set of ш'(х, k). It is the combination 
of those ШеФ) for which ф(О) = х and ф(t) is the e-motion (at а given k). 

It is essential to note that at е -> О the se-t-~~x, k) does not always tend 
to ~(~, k). The set шО(х, k) = nрош'(Х, k) does not obligatorily coincide with 
ш(х, k) (but it is evident that it always includes the latter). In а similar way 
we introduce the set ш~(k) = ~ ~шО(х, k). It сап also Ье wider than ш(k). 

--'- ---'>- ........,. ХЕХ .....:.. 

The sets шО(х, k) and шО(k) are closed and k invariant (consist of whole 
trajectories at а given k). The fol1owing result веетв to Ье essential. 

Theorem 12. The functions шО(х, k) and ш~(k) are upper semicontinuous. 
Note that (вее ref. 40, рр. 78-83), for metric врасев, the dependence of the 

set оп the parameter U(k) is called upper semicontinuous if, for апу converg
ing sequences k -> k*, Y;EU(kJ and У; -> у*, the limit point у* belongs to 
U(k*). 

In the general саве the result that is similar to Theorem 12 for ordinary 
limit sets ш(х, k) and ш(k) is incorrect. It follows from this theorem that the 
sets of шО-bifurсаtiопs are thin. The pair (х*, Р) is called а point of шО(х, 
k)-bifurcations with the gap ;;:, у if there exist such sequences Х; -> х* and 
k; -> k* and such а point У Е шО (х*, k*) that for every i value р[у, шО (Х;, 
kJ ;;:, у, i.e. the distance from У for а11 the шО(х;, kJ is ;;:, у. Similarly, the 
point k* will Ье ca11ed а point of шО(k)-bifurсаtiопs with а gap ;;:, у if there 
exists such а sequence k;-> k* and such а point У = шО(k) that р[у, 
шО(kJ] ;;:, у. 

Theorem 13. The set of а11 the points of шО(х, k)-bifurcations with the 
gap ;;:, у is nowhere dense in Х х К for апу у > О. The set of а11 the points 
of шО(k)-bifurсаtiопs with the gap ;;:, у is nowhere dense in К for апу у > О 
either. For every k the set of each х as the (х, k) is the point of шО(х, 
k)-bifurcations (at ап arbitrary gap), is positively invariant (i.e. it consists 
of positive semi-trajectories). 
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For every B-motion of ф(t) at а given k опе сап introduce the following 
relaxation times. Let х = ф(О), у > О and 

T~ (ф, k, у) inf{t ;::, О/р[ф(t), ш'(х, k)] < у} 

rНф, k, у) mes{t ;::, О/р[ф(t), ш'(х, k)] ;::, у} 

rНф, k, у) inf{t ;::, О/р[ф(t'), ш'(х, k)] ",;; у, if t' > t} (20) 

I1НФ, k, у) inf{t ;::, О/р[Ф(t), ш'(k)] < у} 

'7НФ, k, у) mes{t ;::, О/р[ф(t), ш'(k)] ;::, у} 

'7З(ф, k, у) inf{t ;::, О/р[ф(t'), ш'(k)] ",;; у, if t' > t} 

The аЬоуе relaxation times сап Ье ascribed to тапу various types of slow 
relaxation: the unrestrictedness of ri(l1i) at а given в, its unrestrictedness at 
апу sufficiently втаll в, etc. W е will consider only опе case of the unrestrict
edness within the limit в --> О. 

Let ив аввите that воте dynamic system has rr(l1r)-slow relaxations if' 
there exist у > О sequences of Bj > О, Bj --> О of points XjEX and kjEK, and of 
вгтоtiопs фj(t)(аt k = k j ) and фj(О) = Xj ' for which at j -> 00 we have 

r?(фj' k j , у) --> 00 ['7?(фj' k j , у) --> 00]. 

Theorem 14. Let Х Ье connected. In this саве r~-slow relaxations exist if 
and only if there are ша (Х, k)-bifurcations. 

Let ив compare this theorem with Theorem 7 about rз-s1оw relaxations. 
Loops ав а separate reason for slow relaxations have vanished. 

Without going into details of the investigations of the relationships 
between slow relaxations in perturbed systems and the specificity of their 
dynamics, let ив describe the situations in опе individual system (without 
the parameter). In what follows the аЬвепсе ofthe parameter is not specific
аllу noted. 
То study the limit behaviour of B-motions (at 8 -->0), we will introduce two 

relationships [18]: pre-order (>-) and equivalence (~ ). Let ив suggest that Х1 
precedes Х2 (Х1 >- Х2 ) if, for апу 8 > О, there exists such 8-motion Ф and а 
moment t > О, ав ф(О) = Х1 and ф(t) = Х2 • W е will claim that Х1 is equivalent 
to Х2(Х1 ~ Х2)' ifx1 >- Х2 апа Х2 >- Х1 • 

The relationships, rather similar in вепве, for smooth dynamic systems 
were introduced in ref. 34 (р. 220 etc.) for studying the random perturbations 
via а method of action functionals. Close concepts сап also Ье found in ref. 
39. 

Let ив identify equivalent points in ш~ which is totally disconnected (each 
point has а system of neighbourhoods that are closed and ореп simul
taneously). The врасе ш~/ ~ сап Ье treated ав а system of sources and sinks. 
This system is similar to that of limit cycles and fixed points in а smooth 
rough two-dimensional system. The sets шО(х) сап change jumpwise only оп 
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the boundaries of the attraction regions for the corresponding sinks. Let ив 
give а strict formulation of this theorem. 

ТЬе set Ycw~will Ье called saturated downwards iffor any YEYwe have 

{xEw~IY >- Х} с У 

It means that аН the points of ш~ that are preceded Ьу at least one point of 
у аlво lie in У. 

Let ив determine the attracti?n region of the set У с ш~ 

AtO(Y) = {ХЕХ]Ш~(Х) с У} 

It consists of those Х for which the limit set ШО(Х) lies in У. If У сш~ is open 
in the ш~ saturated downwards set, then the set AtO(y) is open in Х. 

Theorem 15. Let х* Ье the point of wO(x)-bifuгсаtiопs (k Ьав been omitted, 
the system Ьав по parameter). Then there exists an open in ш~ saturated 
downwards set У for which x*EJAtO(Y) (the b~undary дИ for the set И is 
determined ав а difference of its closure и and the interior iпtИ: 
дИ = ~iпtИ, for the open set дИ = =елИ). 

ТЬе relationship between ,f -and I1f -slow relaxations in individual systems 
is similar to that between 'i- and 17i-810w relaxations in а smooth rough 
two-dimensional system (вее Theorem 11). 

Theorem 16. Let Х Ье connected. Then if ш~ is connected, there are по ,~
and 17~ -slow relaxations. In саве ш~ is disconnected there will Ье ,~ z 3 and 
17~-slow relaxations. 17~. z-slow relaxations in individual system (with~~t par
ameters) are impossible. 

"Structurally stable systems are not dense": thi8 i8 the title of Smale's 
study [41] that Ьав opened а new period in understanding dynamics. Struc
turally stable (rough) systems are those whose рЬаве patterns undergo по 
qualitative changes at вmаН perturbations (for accurate definitions with 
comprehensive motivation, вее ref. 11). Smale constructed висЬ а structur
аПу unstable system that any system sufficiently close to it is аlво structur
аПу unstable. This result Ьав destroyed any Ьоре of the possibility of 
classifying "almost аП" dynamic systems. Such Ьорев were associated with 
the advance in the classification of two-dimensional systems, among which 
the structurally stable ones are dense. 

ТЬе literature reports various attempts to improve the catastrophic situa
tion with structural stability. One approach is to suggest висЬ а natural 
concept of stability for which almost аН the systems would Ье stable. An 
interesting attempt Ьав been made in this direction [42, 43]. ТЬе following 
concept of stability was 8uggested [42, 43]: th08e systems are stable in which 
almost аН trajectories change only slightly with вmаН perturbations. This 
stability is typical. In this sense almost аН the systems are 8table. 

ТЬе other attempt to get rid of the "Smale nightmare" (the presence of 
domains of structurally unstable systems) was to consider the 8-motion (with 
or without further examination of the limit 6 --+ О). ТЬе picture obtained is -
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more stable than the phase pattern. It seems to Ье evident that primary 
investigation must Ье carried out for those (more rough) details of dynamics 
that do not vanish at small perturbations. This approach to study transient 
processes was suggested Ьу Gorban' [18]. Опе must note its ideological 
closeness to the method of quasi-mean values in statistical physics (see ref. 
44, рр. 193-269). Ву analogy, the approach suggested сап Ье called а method 
of "quasi-limit" sets. 

7. Conclusion 

Let us present the most important results of our investigations. 
(1) It is not always necessary to search for some "side" reasons for slow 

relaxations. Опе must first determine whether the system has slow relaxa
tions of dynamic (in chemistry of kinetic) origin. 

(2) Опе of the possible reasons for slow relaxations are bifurcations 
(explosions) of (O-limit sets. It is useful to study the dependence of (О(Х, 
k)-limit sets оп the parameters and initial data. (As usual, we study the 
dependences only оп the parameters.) 

(3) Perturbations rough the system. Relationships between various types 
of slow relaxations taking into account perturbations are similar to those in 
smooth rough two-dimensional systems. 

(4) Due to the large number of various types of slow relaxations irreduc
ible to each other, in treating experimental data опе must establish precisely 
what relaxation time is high. 

(5) Slow relaxations in real systems are often "restrictedly slow", i.e. 
relaxation time is high but still restricted. То examine these peculiarities we 
recommend the following approach, originating in its significance from 
Andronov's study. The system considered is included in the appropriate 
class, for which slow (infinitely) relaxations and bifurcations are studied. 
This study and the information concerning the extent to which some special 
systems are close to the original опе provide essential data. (In terms of this 
approach we have made ап attempt to study the effect of "non-physical", in 
particular negative, steady states оп the relaxation of catalytic reactions 
[16, 45].) 

References 

1 В.Р. Levchenko, N.V. Kul'kova and M.I. Temkin, Kinet. Katal., 17 (1976) 1542. 
2 M.I. Temkin, Кinet. Katal., 17 (1976) 1095. 
3 G.D. Birkhoff, Dynamical Bystems, American Mathematical Bociety, New York, 1927; 

Gostekhizdat, Moscow, 1940 (in Russian). 
4 V.V. Nemytskii and V.V. Btepanov, Qualitative Theory ofDifferential Equations, Gos. Izd. 

Teor. Tekh. Lit., Moscow, Leningrad, 1949 (in Russian);Princeton University Press, 
Princeton, 1960. 



381 

5 w.н. Gottschalk and G.A. Hedlund, American Mathematical Society CoHoquium, Vol. 36, 
1955, р. 1. 

6 W. Н. Gottschalk, Вibliography for Topological Dynamics, Wesleyan University, Middle
town, СТ, 1966. 

7 к.в. Sibirskii, Introduction to Topological Dynamics, RIO Akad. Nauk Moldavian SSR, 
Kishinev, 1970 (in Russian). 

8 V.I. Zubov, Stability of Motion, Vysshaya Shkola, Moskva, 1973 (in Russian). 
9 В. Smale, BuH. Ат. Math. Вос., 73 (1967) 747; Usp. Mat. Nauk, 25 (1970) 113. 

10 Z. Nitecki, Differentiable Dynamics. Ап Introduction to the Orbit Structure of Diffeomor
phisms, MIT Press, Cambridge, МА, 1971; Mir, Moscow, 1975 (in Russian). 

11 V.I. Arnold, Supplementary Chapters to Ordinary Differential Equations Theory, Nauka, 
Moscow, 1978 (in Russian). 

12 R. Bowen, Symbolic Dynamics (Collection of Works), Mir, Moscow, 1979 (in Russian). 
13 A.N. Gorban', V.I. Elokhin, V.M. Cheresiz and G.8. Yablonskii, Instationary Processes in 

Catalysis, Institute of Catalysis, Novosibirsk, 1979, Part 1, рр. 83-88 (in Russian). 
14 A.N. Gorban', V.M. Cheresiz, V.I. Elokhin and G.S. Yablonskii, Mathematical Methods in 

Chemistry, Vol. 2, Qualitative Methods, CNIITENeftekhim, Moscow, 1980, рр. 53--60 (in 
Russian). 

15 V.I. Elokhin, V.M. Cheresiz, G.8. Yablonskii and A.N. Gorban', Ргос. 3rd All-Union Conf. 
оп Кinetics of Catalytic Reactions (Кinetics-3), Vo!. 1, Ka!inin, 1980, рр. 152-158 (in 
Russian). 

16 V.I. Elokhin, G.8. Yablonskii, A.N. Gorban' and V.M. Cheresiz, React. Кinet. Cata!. Lett., 
15 (1980) 245. 

17 A.N. Gorban' and V.M. Cheresiz, S!ow Re!axations ofDynamica! Systems and Bifurcations 
of w-Limit Sets, Prepr., Computer Centre, Krasnoyarsk, 1980 (in Russian). 

18 A.N. Gorban', Slow Relaxations of Perturbed Systems, Prepr. No. 27, Computer Centre, 
Krasnoyarsk, 1980 (in Russian). 

19 A.N. Gorban' and V.M. Cheresiz, Dokl. Akad. Nauk SSSR, 261 (1981) 1050; Воу. Math. 
Dokl., 24 (1981) 645. 

20 H.F. De Baggis, Dynamic Systems with Btable Structures. Contributions to the Theory of 
Non-Linear Oscillations, Vo!. 2, Princeton University Ргевв, Princeton, 1952, р. 306. Usp. 
Mat. Nauk, 10 (1955) 101. 

21 М. Peixoto, Topo!ogy, 1 (1962) 101. 
22 Ch. Pugh, Ат. J. Math., 89 (1967) 956; Matematika, 12 (1968) 81, 136. 
23 N.N. Bautin and Е.А Leontovich, Qualitative Investigation Methods for Dynamic Вув-

tems оп the Plane, Nauka, Moscow, 1976 (in Russian). 
24 G.N. Duboshin, Tr. Astronom. Jnst. Р.к. Bternberga, 14 (1940) 153. 
25 I.G. Malkin, Prikl. Mat. Mekh., 8 (1944) 241. 
26 V.E. Germaidze and N.N. Krasovskii, Prik!. Mat. Mekh., 21 «1957) 769. 
27 N.N. Krasovskii, Воте Problems of Motion Btabi!ity, Fizmatgiz, Moscow, 1959 (in Rus-

sian). 
28 I.G. Malkin, Theory of Motion Stability, Nauka, Moscow, 1966 (in Russian). 
29 А. Btrauss and А. У orke, BuH. Ат. Math. Вое., 22 (1969) 513. 
30 А.А. Martynyuk and R. Gutovski, Integral Inequalities and Motion Stability, Naukova 

Dumka, Kiev, 1979, рр. 139-179 (in Russian). 
31 L.B. Pontryagin, А.А. Andronov and А.А Vitt, Zh. Eksp. Teor. Fiz., 3 (1933) 165. 
32 A.D. Ventzel and M.I. Freidlin, Usp. Mat. Nauk, 25 (1970) 3. 
33 Yu.I. Кifer, Izv. Akad. Nauk SSBR Mat., 38 (1974) 1091. 
34 AD. Ventze! and M.I. Freid!in, Fluctuations in Dynamic Systems Caused Ьу ВтаН Ran-

dom Perturbations, Nauka, Moscow, 1979 (in Russian). 
35 D.V. Аповоу, Proc. Int. Conf. оп Non!inear Oscillations, Кiey, 1970, Vol. 2, рр. 39-45. 
36 Р. Walters, Lect. Notes Math., 668 (1978) 231. 
37 J.E. Franke and J.F. Belgrade, J. Diff. Eqn., 26 (1977) 27. 
38 J.E. Franke and J.F. Belgrade, Trans. Ат. Math. Вос., 245 (1978) 251. 



382 

39 Н. Easton, Lect. Notes Math., 668 (1978) 95. 
40 К. Kuratowski, Topo!ogy, Vo!s. 1,2, Mir, Moscow, 1969 (in Russian). 
41 S. Smale, Ат. J. Math., 88 (1966) 491; Matematika, 11 (1967) 107. 
42 V.A. Dobrynskii and A.N. Sharkovskii, Dokl. Akad. Nauk SSSR, 211 (1973) 273. 
43 A.N. Sharkovskii, Abh. Akad. Wiss. D.D.R. Abt. Math. Naturwiss. Tech., 4 (1977) 193. 
44 N.N. Bogolyubov, Selected Works оп Statistical Physics, Moscow University, Moscow, 

1979 (in Russian). 
45 A.N. Gorban', V.I. Bykov and G.8. У ablonskii, Sketches оп Chemical Relaxation, N auka, 

Novosibirsk, 1986 (in Russian). 




