











283

The inequality (25), implying a demand for the sufficiently weak reversibility
of the adsorption step of B, is a necessary condition for the multiplicity of
steady-state solutions. To a necessary and sufficient condition for multiplic-
ity, we must substitute eqn. (24) into the inequality from (23), but the
expression obtained will be extremely cumbersome.

The conditions determining a region for the existence of several steady
states can be obtained by different methods and can be of different forms.
Thus for the more simple case 2_, = 0, an inequality can be obtained from
eqns. (23) determining a boundary for the multiplicity of internal steady
states

b 1 a\?
o (0~ Sa,0;) > (bo ~1n a—) (26)
where

a, = 2k1PA2k2_2 + Ry Ppky(Ry Py + k_y) —4k Py Rk ok,
a = 4k1PAzkvzk3 - k§(2k1PAZ — Ry Py)
ay = ZklPAzkg

@ = -2k, P K,
2 2a}
bl = gal ‘%3-
a,a
by = @y — 917:

With the fulfilment of condition (26), the system (20) has three internal
steady states. For the case under consideration (k_; = 0) there also exists a
boundary steady state (x = 1, y = 0). The analysis of condition (26) shows
that the multiplicity of steady states will be realized with other conditions
being constant at relatively low temperatures (the desorption rate is low)
and low values of Py, high P, , and also at sufficiently high &,.

Steady-state kinetic curves W(FP;)* for the adsorption mechanism (8),
taking into account the reversibility of adsorption steps, are illustrated in
Fig. 4(a), (b). At a given value of k_, with increasing & _, [Fig. 4(a)], the region
of multiplicity for steady states diminishes and at some value of k_, it
vanishes completely. With increasing %k _,, the kinetic curve can achieve a
maximum and finally take the form of that with saturation. A similar effect
is observed with the reversibility of the first step at a given value of & _, [Fig.
4(b)]. But the parametric sensitivity here is lower than in the former case.

* For the calculations [222], the fixed parameters were b, = &, = 1,k; = 10, whereas the values
of P, Py, k_; and k_, were varied over a wide range.
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Fig. 4. Dependence of steady-state reaction rate on partial pressure P;. P,, = 1. Dashes here
and hereafter are the corresponding values in unstable steady state. (a) k_; = 0.01. 1,
B, =00L;2k 5 =018, ky = 1.0;4,k_, = 7.0.(0) k_, = 0.0L. L k_, = 0.05;2,k_, = 3.0;3,
k_, = 200.0.

The same situation is also observed in the kinetic curves W(F,,) [Fig. 5(a),
(b)]. Note that the types of hysteresis for W(P, ) and W(F;) differ. The former
hysteresis is characterized by a “counterclockwise” direction and the direc-
tion of the latter is “clockwise”. Typical temperature dependences for the
adsorption mechanism constructed at various values of £°, and activation
energies B, = E, = 0; E_, = 60, E_, = 30 and E, = 10 kcal mol™" are re-
presented in Fig. 6. Kinetic curves W(P,,, P;) in the three-dimensional space
are given in Fig. 7 which also represent the projection of a steady-state rate
“cusp”* to the plane of the P, and Py parameters. It is this projection that
is the above diagram of steady states. Thus we have isolated a region for the
multiplicity of steady states. In a similar way, three-dimensional plots
W(P,,, T) and W(F;, T) can be constructed.

() ] (b)

N

6 9 12 15 18
Az

Fig. 5. Dependence of steady-state reaction rate on partial pressure P, . 5 = 1.(a) k_; = 0.01.
1, ko, =005 2, ko, =01; 3, ko, =10. (b) o, =001. 1, b, =005 2, &, =350 3
k_; = 200.0.

* This concept has been borrowed from the “‘catastrophe theory”. Nowadays this theory has
been extensively developed [220]. Strictly speaking, it is the theory of the peculiarities of
differentiable mappings [221].
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Fig. 6. Temperature dependence of steady-state reaction rate. Py,=F=1k%R,=00L1,
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Tig. 7. Steady-state reaction rate surface at T = const.

4. Relaxation characteristics of the “‘parallel” adsorption
mechanism

Let us now examine the behaviour of the solutions for the dynamic system
(20) in time and analyze the system trajectories in the phase pattern. This
analysis permits us to characterize peculiarities of the unsteady-state behav-
iour (in particular to establish whether the steady state is stable or un-
stable), to determine its type (focus, node, saddle, etc.) and to find attraction
regions for stable steady states, singular lines, etc.

For numerical studies [223] of system (20) corresponding to the three-step
mechanism (8) its parameters were taken to be k, = k, = 1, &y = 10,
k_; = 0.01, and k_, = 0.1. Values of P,, and P, were varied over a wide
range. A sequence of phase portraits for reaction (8) with one or three steady
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Fig. 8. Phase patterns of system (20) at various values of Py. Py, = 1. & = &y = 1, ky = 10,
ko =001k ,=01("). (P =07 0) P =08()P =11d) B = 12

states depending on the parameter P;(P,, = 1)isrepresented in Fig. 8(a)-(d).
At low P, the steady state is unique [Fig. 8(a)]. From all initial surface
compositions we come to this state which is characterized by practically
complete AZ coverage (x =~ 1,y = 0) and a low reaction rate. With increas-
ing Pg, there arise two more steady states [Fig. 8(b)]. One is stable (III) and
the other is unstable (IT). Now the phase portrait has two attraction regions
corresponding to two stable steady states. The trajectory comes into one or
another steady state depending on the region in which the initial conditions
are set. These regions are separated by the separatrices entering into saddle
II. With increasing Pg, the attraction region for the steady state III grows
and stable and unstable steady states I and II converge [Fig. 8(c)]. Finally,
at some bifurcational value of Py, they merge. But at high B there exists
once again only one steady state III [Fig. 8(d)]. In this state the surface is
covered with BZ (x ~ 0, y ~ 1) and the reaction rate is low.

Similar alterations in the phase portrait also take place with increasing
P,,. The only difference is that at low P,, the unique steady state is charac-
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terized by practically complete BZ surface coverage, whereas at high P, the
dominating substance on the surface is AZ. At mean P,, there are two stable
steady states (with their characteristic attraction regions) and one unstable
steady state in the middle of them.

Transient characteristics x(¢) and y(¢) demonstrate various time scales.
The trajectories are often characterized by the fast initial region and the
slow motion in the neighbourhood of some general trajectory (“main-
stream”) towards a steady state. In the case when the phase portrait is
characterized by several steady states, the trajectory can rapidly enter into
the neighbourhood of the unstable steady state and then it slowly relaxes
towards one of the stable states. The general trajectory (“mainstream’) near
which a slow motion takes place lies in the region between two null clines,
% = 0and y = 0. It is evident that, in this region, the relaxation of system
(20) towards the steady state that is an intercept of the null clines will be
slower the narrower this region becomes with variation of the parameter.
When the variable parameter is close to the bifurcation value, the narrowing
of the region will be particularly distinct.

To interpret various time scales found in numerical experiments, it is
necessary first of all to determine the difference in the eigenvalues of the
system matrix linearized in the steady-state neghbourhood. Figure 9 pre-
sents 4,(Pg) and 1,(Pg) which can easily be calculated as solutions of the
quadratic equation. (In the general case 11is a complex function of the model
parameters.) Different 1 values can be the reason for the time separation.
Indeed, 4, and A, differ but their difference is no more than an order of
magnitude. But there is another case that is less trivial. In the region of
critical effects in which the parameter achieves its bifurcation value, one of
the roots becomes positive (after passing through zero) [Fig. 9(c)]. It is in this
region of the parameters that the time to achieve a steady-state 7, sharply
increases when going from one branch of the steady-state kinetic curve to
the other (Fig. 10). But far from steady state in the general case, we cannot
judge the character of relaxation according to the 4, values since here it can
be affected by the non-linear properties of the system.

In several experiments, in particular the study by Temkin and co-workers
[224] of the kinetics in ethylene oxidation, slow relaxations, i.e. the extreme-
ly slow achievement of a steady-state reaction rate, were found. As a rule,
the existence of such slow relaxations is ascribed to some “side” reasons
rather than to the purely kinetic (*‘proper”) factors. The terms “‘proper’” and
“gide” were first introduced by Temkin [225]. As usual, we classify as slow
“side” processes variations in the chemical or phase composition of the
surface under the effect of reaction media, catalyst deactivation, substance
diffusion into its bulk, etc. These processes are usually considered to require
significantly longer times to achieve a steady state compared with those
characterizing the performance of chemical reactions. The above numerical
experiment, however, shows that, when the system parameters attain their
bifurcation values, the time to achieve a steady state, 7., sharply increases.
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Fig. 9. (a) Steady-state reaction rate W(FP); (b) surface concentration of substances x(Py), y(Fp);
(c) eigenvalues 4, (P) and 1,(F;) of characteristic equation of system (20). For the values of the
parameters, see Fig. 8.

This increase cannot be ascribed to the “side” reasons that have not been
included into the reaction model. Similar increases of 7,, namely long induc-
tion periods for the “ignition” and “quenching” of the reaction, were ob-
served by Barelko et al. [5, 42-44, 46, 69] in the oxidation of simple molecules
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Fig. 10. Variations of time to achieve steady states, t,, with consecutive stepwise variations of
P,. The relaxation time, t,, was determined from the condition for the final entry of system (20)
trajectory into the 5% neighbourhood of stable steady state.

(CO, H,, NH,, C,H,) over Pt. For details refer to the description of CO
oxidation given below.

The results of the numerical experiment for system (20) necessitated a
general mathematical investigation of slow relaxations in chemical kinetic
equations. This study was performed by Gorban’ et al. [226-228] who ob-
tained several theorems permitting them to associate the existence of slow
relaxations in a system of chemical kinetic equations (and, in general, in
dynamic systems) with the qualitative changes in the phase portrait with its
parameters (see Chap. 7).

Let us consider the concept of “relaxation” in more detail since no
accurate definition for it has been given previously. The term “relaxation”
is often used for the process by which either an equilibrium or a steady state
is achieved in the system, and the relaxation time is treated as the time to
achieve complete or partial thermodynamic equilibrium. It is evident that,
in this context, the difference between “equilibrium” and “steady state” is
insignificant. The concept of “relaxation time’ is often used for the time
during which a certain function characterizing the deviation from the equi-
librium or the steady state diminishes by e (& 2.718) times compared with its
initial value. It is evident, however, that this definition is only correct for
one-dimensional linear systems. For multi-dimensional linear systems, a
spectrum of relaxation times must be used. For non-linear systems, the appli-
cation of these definitions is correct only in the neighbourhood of a singular
point.

Classification of various relaxation times and their strong definitions
have been reported [227, 228].

Let the phase portrait of the system be characterized by some set of w-limit
points. The concepts of an “w-limit point” and an “@-limit set” have been
extensively used in the theory of dynamic systems. The thing is that the
trajectory does not necessarily enter into a steady state. In the general case
(as well as in the case of chemical kinetic equations), the existence of limit
cycles is possible. The letter w is a symbol for the region of the phase space
into which at t—co the trajectory tends (“from « to »”). Let x, be a vector
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of the initial compositions and % be a set of rate constants. We can then
introduce 7, (x,, &, ¢) which is the time from ¢ = 0 to the first entry of the
trajectory x() into the ¢ neighbourhood of the w-limit set, and (%, B, 8)
which is the time until the final entry of the trajectory into the above
neighbourhood.

We will also have 1,(x,, &, &), which is the time of %(¢) residence outside
this neighbourhood. In particular cases, 7,, 7, and ty coincide (Fig. 11).

The concept of slow relaxation refers to the case in which, for a given
¢ > 0 and arbitrary ¢ > 0, there exist such x, and % values (lying in a given
region having physical significance) as 7, (x,, %, &) > t. It was established
[226-228] that this type of slow relaxation is observed when, and only when,
the phase portrait undergoes bifurcations.

Slow relaxations can be exemplified by the system behaviour correspond-
ing to the adsorption mechanism (8) when the parameters % are close to their
bifurcation values.

Qualitative peculiarities for the dependence of the relaxation time on the
system parameter are represented in Fig. 12. The most peculiar is the “criti-
cal slowing down” in the neighbourhood of bifurcation parameters. Here the
relaxation rate is considerably lower than that of the slowest reaction and,
in principle, it can be infinitesimal. A numerical experiment provides similar
results (Fig. 13).

For the simplest three-step adsorption mechanism (4)atn = 2, m = 1and
p = q = 1, a retardation in the relaxation rate is observed in the region
("hole”) between two null clines

x = 2kpa,(1 —x — yP — kyxy = 0 @7

¥ o= kpp(l —x —y) — kyxy = 0 (28)

In this case adsorption steps are assumed to be irreversible. These isoclines
are the second-order curves with a common axis of symmetry x = y. If there

0 1

Fig. 11. Relaxation times 1, 7, and 3.
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Fig. 12. Qualitative peculiarities for the dependences of relaxation times t, and 7, on P;. (a) (x,,
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Fig. 13. Achievement of steady state for system (9) when relaxing from the initial state (x, = 0.5,
Yo = 0) at k; = 7.9 (a) and dependence t,4(k,) at ¢ = 0.05. kP, =1kPB =136")

are no internal steady states, the isocline y = 0 over the whole of its length
in the reaction simplex S is localized closer to the boundary x + y = 1
compared with x = 0[Fig. 14(a)]. Unrough internal steady state is generated
on the line of equal concentrations x = y [Fig. 14(b)]. It is in this region of
surface coverages that, when the parameters become close to their bifurca-
tion values, the time of relaxation towards steady state I from the initial
conditions belonging to the attraction region formed under bifurcations of
a two-fold equilibrium state III-1V type “saddle node”, grows infinitely (Fig.
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Fig. 14. Possible cases for mutual disposal of the null clines for system (9) in reaction simplex
S.

13). This is due to the fact that the relaxation rate at a narrow place, i.e. the
region of “condensing trajectories” [229], tends to zero more rapidly than the
length of the trajectory where the relaxation is retarded. These properties,
which can easily be obtained from the analysis of eqns. (27) and (28), make
it possible to obtain the inequality [230]

max zl,., » max zl,_

This inequality is the necessary and sufficient condition for the multiplicity
of steady states for the proper kinetic model. In addition, from the form of
%520 (2) and ¥ ;-0 (2) we can also obtain sufficient conditions for the multi-
plicity of steady states [Fig. 14(b)]

k3D

max zj;.o =
2k1pA2
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kyDp
>
max z'k:o = 2k1 o~

In this case it is necessary to fulfil the condition k,pg {(2k,p4,) < 1.If these
conditions are expressed through the reaction parameters and are combined,
we obtain
1+ 28 =28+ P = 2 + 17 > g (29)

where « = 2k;p, [ky and B = k,pp/k, are the criteria characterizing the
competition between the adsorption steps, on the one hand, and the interac-
tion step on the other. Adsorption steps lead to the binding of unoccupied
surface centres of the catalyst whereas the interaction step promotes their
release. If the latter step is sufficiently strong and the adsorption steps of
different substances are characterized by different kinetic laws, the system
can have critical effects.

A bifurcation diagram on the plane of (a, §) criteria is represented in Fig.
15. An equation for the solid curve corresponds to the equality in eqn. (29).

We have already mentioned the sharp difference in the relaxation times .
outside the region between the null clines (~ 1s) and inside it (as high as
hundreds of seconds). The motion outside this region depends on the “fast-
est” reaction. Inside this region the relaxation rate is dependent on the
complicated complex of rate constants, and in the general case we cannot
suggest that the reaction rate is limited by some reaction. The common
trajectory near which the relaxation is retarded is no more than a specific
trajectory that is a separatrix going from the unstable into the stable steady

80
J Qf/cr
Two boundary and 2
. ~
60 two internal ot
teady states >
. steady II{V
o ™ ;:v
£ 407 %
N v
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n Q/(",
20 xq' ~ -
~ Two boundary
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—
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[e] 1 2 3 4
k. P
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B= k

Fig. 15. Bifurcational diagram of system (9). In the region between the solid and broken curves,
an effect of “critical slowing down” is possible.
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state. These effects are also observed when the unstable steady state lies
outside the physical region for the system determination [231].

Let us consider the kinetic model corresponding to the mechanism (8) at
ko, #0and k_, = 0

¥ = 2kpa,(l — x — y)* — 2k, %" — Ryxy

]

b kopp(l — x — ¥) — ksxy

Let us take kypy, = Rypp = 1871, ky = 0.587! and k_, # 0. Besides the
boundary steady state (x = 0, y = 1), there always exists a real-valued
steady state lying outside the physical region of determination (at
0 < k_, < 1;its coordinates will be x > 1,y < 0).

Localization of this steady state as a point of intercept for the null clines
% = 0and y = 0 as a function of the £_; value is shown in Fig. 16. At low
k_, this point is localized sufficiently close to the region of probable initial
conditions (at k_; = 0 it becomes a boundary steady state). It is the proxim-
ity of the initial conditions to the steady state outside the reaction polyhed-
ron that accounts for the slow transition regime. Note that, besides two
real-valued steady states, the system also has two complex-valued steady
states. At bifurcation values of the parameters, the latter become real and
appear in the reaction simplex as an unrough internal steady state. The
proximity of complex-valued roots of the system to the reaction simplex also
accounts for the generation of slow relaxations.

Similar results can also be obtained for the more simple mechanism

MDA +Z =2 AZ
@B+ 7Z =2 BZ

(3)AZ + BZ - AB + 27

~

| I 7
o o2 06 &2 4
AZ
[az] g

-

Fig. 16. Steady states and null clines for system (20) with varying k_;(k P, = kyFp = 1 s,

by =0,k =05s")1[AZ] = 0;1,k_y = 107%s7 %17,k = 1072s"; 1" k_, = 107%s7}; 2,
[B7] = o.
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Thus the effect of slow relaxations can also be noticeable in the case when
the steady state inside the reaction polyhedron is unique and stable as a
whole (all positive solutions tend to it at t — o0). For this purpose it suffices
that the “external” (non-physical) steady state is close to the polyhedron
boundary and the initial conditions localize on the opposite side of the
boundary (inside the polyhedron).

We believe this fact to be of general importance. As a rule, chemical
kinetic equations are non-linear and must have several steady-state solu-
tions, not all of which have physical meaning (negative and complex-valued
steady-state solutions may arise). But as we have shown, slow transition
regimes can also be observed in the case where the steady-state solutions
having no physical meaning are localized close to the reaction polyhedron.
It is evident that the same situation can also arise in closed systems where
the point of detailed equilibrium 1s always unique. Thus to interpret the
dynamics of chemical reactions (in particular the reasons for the occurrence
of induction periods) in the physically determined region of compositions,
we can obtain the necessary information from the localization of all steady
states in the system, including non-physical ones.

In conclusion, let us emphasize that our investigation has revealed a
great variety of relaxation effects caused by the complex reaction kinetics,
1.e. the effects are of purely kinetic origin.

Even for the linear mechanisms with a sufficiently large number of reac-
tions, the relaxation time can be considerably higher than the characteristic
time of the reaction [100]. This is possible when the eigenvalue of the system
that is minimum with respect to its modulus has a non-zero imaginary part,
i.e. it is necessary that the slowest relaxation process is of damping oscilla-
tion character. As far as the non-linear mechanisms are concerned, such a
situation already arises in a small number of reactions. If the system has
bifurcations (critical effects), there arise slow relaxations of the kinetic
origin with the strict significance specified previously. These relaxations
can take place infinitely slower than those of the slowest reactions taken
separately. The kinetic model of the three-step adsorption mechanism is the
simplest case demonstrating slow relaxations of the kinetic origin.

5. Analysis of “‘consecutive’” adsorption mechanisms

Let us examine one more simple three-step mechanism whose steady-state
characteristics are also of the hysteresis type. In what follows we will show
that their type differs considerably from the previous one. It is the mechan-
ism including steps of “consecutive” adsorption: one gas-phase substance is
adsorbed on unoccupied sites and is then joined by a second gaseous sub-
stance, whereupon the two intermediates interact. In the general form this
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mechanism can be represented by [232]
A, +mZ & mAZ
B, + nAZ 2 nABZ (30)
pAZ + gABZ - (p+@Z + A, , B,

This mechanism is a constituent of the mechanisms for various catalytic
reactions, e.g. for NH; oxidation [233].

A kinetic model of mechanism.(30) for the subsystem of the intermediates
A7, ABZ, and Z, assuming constant concentrations of the observed sub-
stances A,,, B,, and A B, is

P+ gqr
x = mki(l — x — )" — mk_; x" — nkyx" + nk_,y" — pkyxPy?

= P(x, )

(31)
¥ o= nkyx" — nk_py" — qkyx"y?

= Qx, )

Here x, y, and (1 — x — y) are the concentrations of the surface substances
AZ, ABZ, and Z, respectively, &, are the rate constants (partial pressures A,,
and B, enter as cofactors), m, n, p, and ¢ are the stoichiometric coefficients,
and the functions P(x, y) and Q(x, y) are determined, as usually, in the
reaction simplex S = {(x, y): x > 0, y > 0, x + y < 1}. The initial con-
ditions x, = x(0), y, = y(0) are set in 5. By analogy with the above, we can
show that all the trajectories x(¢) and y(¢) starting in S do not leave it. The
latter provides the existence of at least one steady state for eqns. (31).

The simplest mechanism type (30) admitting a multiplicity of steady states
is represented as [223, 232]

WA +7Z = AZ
(@B + AZ » ABZ (32)
(3)2AZ + ABZ — 37 + A,B

ie.m =n =g = landp = 2. Steady states are determined from eqns. (31):

P(x, ) = 0 and @(x, y) = 0. From the second equation of (31) we obtain
_ kox
VT R, + Rkl

Then the first equation of (31) can be transformed into the form
Fx) = £* —ax®>*+bx —c = 0

where a = kiky/k, b = (kiky + kik_y, + k_jk_y)k, c = kk_,/k, and
k = ky(ky + k_, + 3k,). A necessary and sufficient condition for the exist-
ence of three solutions can be obtained if we demand that, at the points of
extremum x® and x® of the functions F(x), the condition F(x™) < 0,
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Fig. 17. Steady-state reaction rate as a function of (a) 2, and (b) k,. The broken lines are unstable
steady states.

F(x®) > 0 is fulfilled. This condition is of the form

4(a® — 3b)(b* —3ac) > (ab —9c)* (33)

In the simplest case, when k_, = k_, = 0, the fulfilment of (33) is necessary
and sufficient for the fact that, along with a boundary steady state, the
system has two internal steady states with a non-zero reaction rate
W = kyx%y. Finally, we obtain the simple expression

ky > 4k<1 + 3 é&) (34)
k,

The qualitative character of dependences W(k,) and W(k,) is shown in
Fig. 17. Hysteresis for W(k,) is characterized by the existence of such a
critical value of %, as at all &, > k., the steady-state rate has three
essentially different values. We can write down in the explicit form the limit
values of Wat k,— oo [W,F Wi in Fig. 17(a)] and also W, corresponding to
ky .. For W(k,) [Fig. 17(b)] we can also calculate &, and W_.. An illustrative
example of the qualitative character of the functional dependence W(k,, &,)
in three-dimensional space is given in Fig. 18. The bottom part of Fig. 18
shows the projection of the steady-state rates “fold” to the plane of the
parameters at which the system has several steady states.

When the steps in mechanism (32) are reversible (k_, k_, > 0), it can
easily be shown that the qualitative character of W(k,) and W(k,) [Fig. 17(a),
(b)] 1s preserved. Unlike the above catalytic trigger, in this case the multi-
plicity of steady states can also be observed at & — o0 ([A] — ), i.e. the
region of parameters in which there are three steady states is infinite,

Dynamic studies can be performed as previously. We will only note that,
like eqns. (5), the system (31) has no limit cycles. In addition, the unique
steady state is always stable. If there are three steady states (x; < x, < x,),
two are stable (x; and x;) and one (the middle steady state x,) is unstable.

A comparative analysis of steady-state characteristics for “‘consecutive”
and “parallel” three-step adsorption mechanisms with two independent
intermediates shows that, to interpret the multiplicity of steady states, the
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Fig. 18. Three-dimensional kinetic dependence for the “consecutive” adsorption mechanism.

former needs stronger non-linearity of the kinetic model. In the case under
consideration, for the appearance of several steady states the step of interac-
tion between the adsorbed substances must be three-molecular. For the
parallel adsorption mechanism it can be obtained in terms of bimolecular
reactions. If we restrict ourselves only to these reactions, the consecutive
adsorption mechanism cannot be applied to interpret critical effects. On the
other hand, if the experimental data are characterized by a practically
infinite hysteresis of the steady-state rate [Fig. 17(a)], the detailed mechan-
ism must involve a totality of steps of type (30). But neither “parallel” nor
“consecutive” adsorption mechanisms with two independent intermediates
can describe self-oscillations. For this purpose a more complicated model
must be used.

6. Models of kinetic self-oscillations in heterogeneous
catalytic reactions

In terms of the law of acting surfaces and without any additional assump-
tions, we will consider a simple kinetic model characterized by rate self-
oscillations.

Let us complicate mechanism (4). It is known that many gases can be
adsorbed on the catalyst surface in several (at least two) forms, one of which
is unreactive. This case is observed, for example, in CO adsorption over Pt.
By analogy with ref. 105, let us complete mechanism (8) by a buffer step

@B +7Z - (BZ)

where (BZ) is an intermediate that does not participate in the main reaction.
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This completed mechanism is accounted for by the kinetic model [108]

X = 2k 2 -2k %" — kyxy = P(x,5,q) (35a)
¥ o= kz — Ry — kxy = Qx, 3, 9) (35b)
q = k4z - k—4q = R(x’ Y, Q) (356)

where 2, x, y, and g are the surface concentrations of Z, AZ, BZ, and (BZ) on
the catalyst, respectively, and partial pressures of gaseous A, and B enter as
factors in the corresponding constants. The steady-state points for eqns. (35)
are determined as a solution of the system of algebraic equations

Plx,y,q9) = Qx,5,q9 = R, yq =0 (36)

Let us suggest that the first two equations P = @ = 0 in eqn. (36) set in the
implicit form x = x(q),y = ¥(q), and z = 2(q). Then in accordance with eqn.
(36) the equation R = 0 can be represented as

zg) = og
E_, (37
T R

Hence the steady-state points for eqns. (35) correspond to the points of
intersection in the (z, g) plane of the curve z = z(g) and the straight line
z = og in eqn. (37). These points depend only on the ratio &, to k_,, rather
than their absolute value. It will be shown in what follows that the latter
accounts for the dynamic characteristics of egns. (35). The curve 2(g) is
plotted in accordance with the solutions of the equations P(x, y, ¢) = Q(x,
vy, ¢) = 0 with respect to x and y, where g is ranging within 0 < ¢ < 1
according to the formula z(q) = 1 — x(q) — (@) — q. These values of x(qg)
and y(g) are the steady-state points of the system corresponding to mechan-
ism (8). We have selected above a region of the parameters for this mechan-
ism in which there exist three steady states. In this region, the curve z(g) can
be of a typical S-shaped form (Fig. 19). Thus the concentration of unoccupied
centres can change jumpwise at a certain concentration of the unreactive
substance. (Note that similar results can be obtained when studying dynam-
ic properties of the adsorption mechanism complicated by the catalyst
deactivation.) The analysis for the stability of the steady-state point in the
reduced system (35a)—(35b) where ¢ acts as a parameter, indicates (see Sect.
3) that the unique steady state is stable. If the number of steady states
amounts to three (z; < 2z, < 23) the two outer (2; and 2z;) are stable and the
middle (z,) is unstable. Studies of the stability character for the steady state
of the complete system (35) show that this property of instability can be
preserved at sufficiently low values of &, and k£_,. In this case system (35) can
also have an unique steady state. As usual, the solution of (35) was con-
sidered in the reaction simplex.
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Let (x*, ¥*, ¢*) = (¥) be a steady-state solution for eqns. (35). The analysis
of stability for (*) provides the characteristic equation

BA+oil2+6A+A =0

whereo = —trA,d = A, + Ay + Ay, A = —detd, 4 = llagll G, j = 1, 2,
3) is the matrix of the corresponding linearized system at the point (*), and
A;(G = 1, 2, 3) are the principal minors of 4. In our case, matrix A is
non-positive {a; < 0, (*) € S§]. Hence it has a non-positive eigenvalue, i.e. a
real-valued eigenvalue, 4, < 0. The character of the other two, i.e. /, and 4,
is determined by the relationship between g, §, and A, moreover ¢ > 0.1t can
be shown that

dz(q) B A

g ° A
where A, reduces to zero at the points ¢, and ¢, in the curve z(g) (Fig. 19),
is negative between these points and positive outside the ¢;, ¢, section. This
relationship suggests that, for the case represented in Fig. 19, the value of
Aissign-constant, namely A > 0. Hence a necessary and sufficient condition
for the instability of (*) is the inequality § < 0. At § < 0, (¥) is stable, at
6 = 01it corresponds to bifurcation values of the parameters (the transition
of the real part of eigenvalues A, and A; through zero). From § < 0 for the
fixed « we can obtain the inequality &, < k¥ for k,. Similarly, from é < 0 for
a fixed k, we can obtain the limitations o~ < o < « for o (Fig. 19). Thus
when &, k_,, ks, k.;, and k, are properly chosen, in the space of the &, and
k_,parameters a region with the unique unstable steady state for (35) can be
found.

Calculations were carried out at &, = 2.5, k, = 1.0, &y = 10, k_, = 0.1,
k, = 0.0675, and k_, = 0.022s7", ensuring the uniqueness and instability of
(*). Fragments of the projection of the phase space (x, v, ¢) to the respective
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phase planes are represented in Fig. 20. A comparison with Fig. 19 shows
that the oscillations are observed in the regions of phase coordinates close
to the hysteresis in the curve z(g). The shape of the limit cycles in Fig. 20 is
considerably dependent on k£, and &_,. The lower &, and %k_,, the closer the
shape of the limit cycle to the hysteresis in the z(¢) curve. Self-oscillations
of the reaction rate W = kyxy with time are shown in Fig. 21. The broken
line marks the Wvalue in the unstable steady state (*) corresponding to this
self-oscillation performance. Varying k, at a fixed ratio of « shows that, with
increasing k, up to the limit values of k¥, the frequency of oscillation grows
at an almost constant amplitude. At 2, > k¥, the oscillations vanish “‘jump-
wise” and the system stabilizes to the steady state (*)

Thus the mechanism formed by steps (1)-(4) can be called the simplest
catalytic oscillator. [Detailed parametric analysis of model (35) was recently
provided by Khibnik et al. [234]. The two-parametric plane (ky, k_,/k,) was
divided into 23 regions which correspond to various types of phase por-
traits.] Its structure consists of the simplest catalytic trigger (8) and linear
“buffer”’, step (4). The latter permits us to obtain in the three-dimensional
phase space oscillations between two stable branches of the S-shaped kinetic
characteristics z(g) for the adsorption mechanism (1}-(3). The reversible
reaction (4) can be interpreted as a slow reversible poisoning (blocking) of

wis™

1 T T I
100 300 500
t(s)

Fig. 21. Self-oscillations of reaction rate according to model (35).
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the active catalyst surface. In the model examined, the self-oscillations of
the reaction rate take place as a combination of the “fast” system of steps
(1)-(3) (a typical adsorption mechanism) leading to a sharp change in the
number of unoccupied sites of the surface, and the “slow” reversible step (4),
ensuring self-oscillations of their concentrations. “Buffer” step (4) can also
be represented by the other (but not every) reversible step with a hanging
vertex. This step can also be non-linear. It is of importance that only &, and
k_, are sufficiently low and, by analogy with Fig. 19, the model parameters
provide a unique intersection of the proper S-shaped curve at the point of
its middle unstable branch c;c,.

At the beginning of this chapter, we mentioned that Ivanova [167, 168], by
using the Clark algorithm [235], had recently found sufficiently general
conditions to ensure steady state uniqueness. Additionally, she formulated
the instability conditions for this steady state.

Let us apply her method to study kinetic models for several adsorption
mechanisms having buffer steps [109, 236]. For example, let us take the
mechanism

M)A, + 27 = 2AZ
@B +7Z 2 BZ
(B)AZ + BZ - 27 + AB
@D +2Z = DZ,

The rank of the matrix of stoichiometric coefficients amounts to 8; the system
has one law of conservation C, + G, + C; + 2C, = C, where C,, C,;, C;, and
C, are the concentrations of Z, AZ, BZ, and DZ,, respectively. On the
tetrahedron boundary C, 2 0,C, =2 0, C, = 0, C, + C, + C, < C, there is
only one steady-state point (0, C, 0) that is unstable. All the trajectories for
the respective system of differential equations enter into the interior of this
tetrahedron. The coefficients a, and @, of the characteristic polynomial P(1)
at the steady-state point (C,, C,, C;) are of the form

o W T WL
a, = {Clczca[W{(Cz C3)+CI+CZ+CS]

W, W TW
E,—é—zc%[ﬁ/% (C, + 3C, + 4C, + C) + (4C, + CI)C{I
1 3“4 2

+

+ GGy + G + 4C4)}
_ Ww W (WJ c
as = —m—* ‘W? CZ + Cl + CZ + C3 -+ 4C4 —2k1 k—:;

where W~ are the rates of the individual reactions.
It follows from the steady-state equation for C, that k,C? = k_,C,. Conse-
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quently, if the inequality 2k,k_, > k_,k, is fulfilled, then a; < 0 at every
steady-state point, hence it is unique. If, in this case, the parameters are
chosen so that C; > C, and W,*/W,” > 0 and W,* is sufficiently low, then
a, < 0.

The calculations show that, at values of the parameters fitting the above
conditions, the system will have self-oscillations. If in the mechanism exam-
ined, step (4) is substituted by AZ 2 DZ, then coeflicients a, and ¢, take the
form

Wy Wy~
G, G, G,
AR
C.G,G,C,
+ (G + GXG + C))

Wt Wi+ - Twit
a; = %E%[W;(Cz +C—-C)+C+Cy+ G+ CQ}
Here we can also find a region of the parameters providing self-oscillations
of the reaction rate.

All the above mechanisms can be called the simplest catalytic oscillators.
In all these mechanisms self-oscillations of the reaction rate are realized due
to the combination of the fast system of steps (adsorption mechanism) lead-
ing to the sharp change in the number of unoccupied surface sites and of the
“slow” reversible step ensuring self-oscillations of their concentration. If
the parameters of the “buffer” step are sufficiently small compared with
those of the main mechanism, all these oscillations will be typically relaxa-
tional,

Let us state the conclusions of this section. We have shown that, in terms
of the law of acting surfaces (without any additional assumptions), it is
possible to construct sufficiently simple kinetic models for the qualitative
interpretation of self-oscillations in the rates of heterogeneous catalytic
reactions.

ay =

[Wﬁ_ G —-C)+ C + C, + CgJ
W

+

W+
[#ﬁ@+Qﬂ+Q@+Q+@ﬂ
2
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