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t -+ 00 to а positive PDE whose existence is suggested according to the 
principle of detailed equilibrium. In general, if there is а positive PDE and 
the initial conditions are always positive (all N, > о), for попе of the 
substances does N, reduce to zero during the reaction time or tend to zero at 
t -+ 00. 

2.3 THERMODYNAMIC LIMITATIONS ON NON-STEADY-STATE КINETIC 
BEHAVIOUR 

In the previous section we introduced the Lyapunov functions for chemi­
cal kinetic equations that are the dissipative functions О. The function RTO 
is treated as free energy. Since G :( о and the equality is obtained only at 
PDE, and for the construction of О it suffices to know only the position of 
equilibrium Й*, there exist limitations оп the non-steady-state behaviour of 
а closed system that are independent of the reaction mechanism. If in the 
initial composition N =F Й*, the other composition N' сап Ье realized during 
the reaction only in the case when 

(а) N' satisfies the same balance relationships as for N 

L aijN;' L aijN, 

for апу j or 

лТй, = ЛТЙ (102) 

(Ь) 

О(М > От') (103) 

The latter means that О is а monotonically decreasing function among the 
solutions for kinetic equations. 

With time the system сап get from point N to point Й' only in the case 
when О(Й) < о (М. But it is not the only limitation. Let us return to а 
system of three isomers (isomerization of butenes) (A j , А2 , and Аз) and 
specify its PDE. According to Wei [30], at 2300С N~ ~ 0.14, N~ ~ 0.32, and 
N~ ~ О_54 (the normalization condition is N j + N2 + Nз = 1, i.e. the law of 
conservation). In this case 

о = N, (lnNj -1) + N, (lnN2 -1) 
j 0.14 2 0.32 

+ Nзс;~з -1) 
N lnN1 N,lnN2 NзlпNз 

10.14 + 20.32 + ~-1 

Level lines for О [their equations are ОСп) = .const.] in the triangle 
Nj + Nz + Nз = 1 are shown in Fig. 8(а). Atg > min О(М оп the boundary 
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Fig. 8. Thermodynamie limitations оп the dynamies of ehemieal reaetion. (а) Level lines of G 
in the system of three isomers; (Ь) diseonneeted multitude of the level; (е) impossibility for the 
erossing of а eonneeted eomponent for the multitude of the level. 

D the line ССИ) = g is по longer а closed curve and at g > min С(Й), the 
11'2 ~ о 

level line С(Й) = g breaks into several segments. ЕасЬ of these segments 
separates the triangle into two parts. In one ofthem С(Й) > g; the other has 
points with С(Й) < g, but сап also have such points where С(Й) > g [Fig. 
8(Ь)]. One cannot get from region II [Fig. 8(с)] into region I during the 
reaction, even if, at the initial instant, С(Й) > g. Ттв is due to the fact that 
it is not possible for the solution of а kinetic equation to cross the С(Й) curve 
"from the inside" when going from region II into region I [Fig. 8(с)]. In this 
case, а monotonic character of С along the solution would Ье broken. 

It is clearly seen that, at а vertex of the reaction polyhedron, С achieves 
its local maximum value (due to the strict convexity of С and the fact that 
its minimum point is positive). Therefore near еасЬ vertex, ав well ав in the 
vicinity of воте faces, the С function сап Ье used to construct а region that 
is unattainable from outside. Let us consider the саве of one vertex and then 
а more awkward general situation. 

Let JiF Ье а vertex for the reaction polyhedron with outcoming edges d 1 , 

... , dk • Оп еасЬ edge С is а strictly convex function, therefore it Ьав а 
unique point of minimum di • Let us express the corresponding minimum 
value of С through Mi 

M i = rilin NEdi С(Й) (104) 

ТЬе maximum value of Mi denoted ав e(JiF) is 

e(JiF) = (105) 

А connected component (а "piece") of the surface for the C(N) e(JiF) level 
separates inside D the unattainability region near JiF. Ттв region must Ье 
set Ьу several inequalities. One inequality С(Й) ~ e(JiF) appears to Ье in­
sufficient, since the С(Й) = e(JiF) surface usually consists of several сот­
ponents ("pieces") and we must describe а region near JiF separated Ьу one 
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component. Therefore let us act ав foIlows. We will designate the multitude 
of аН D vertices, except JVo, through N°. Since c(JVo) is the maximum value 
for the minima ofthe G function a10ng the D edges d i from JVo, each di(i = 1, 
... , k) has at least one (but not more than two) point where G(N) = s(JVo). 
Let ив take for each d i that point which is loca1ized c10ser to JVO and 
designate it ав е; (if this point is unique it will just Ье е;). Then 1et ив 
construct а convex envelope for аН the е; and the whole ofthe D vertices not 
coincident with JVO 

conv (N° U {ei' ... , еn }) (106) 

Construction of convex envelopes consists of а system of linear inequali­
ties (it is а typica1 problem in 1inear programming; see, for examp1e, ref. 31). 
In the simplest cases а convex envelope сап also Ье constructed direct1y. 
This envelope сап also Ье described parametricaHy without using inequali­
ties. For examp1e, for а system ofxj , Х2 , • •• , xq points, their convex enve10pe 
consists of 1inear combinations А1Х! + ... + AqXq where Aj , ••• , Aq are 
non-negative values whose вит equals unity 

conv {xj , ••• , Xq} = {A j x1 + ... + AqXqj}"i ;, О, 

(i = 1, ... , q), А) + ... + Aq = 1} 

For our purposes, however, it is necessary to set а convex enve10pe (106) Ьу 
а system of inequalities. Let these inequalities Ье 

j = 1, ... , q (107) 

Here lj are 1inear functions and rj are constants. 
А "region of unattainabi1ity" V(JVo) near the vertex JVO is set ав follows: 

N1ies within V'(JVo) when and on1y when С(Й) > c(JVo) and there exists such 
j(l ~ j ~ q) that 1j(N) < rj 

V(N') = {Й Е D I С(Й) > c(N') 

1j(N) ~ rj 

even if only for j(l ~ j ~ q)}. 

(108) 

Let ив illustrate the аЬоуе Ьу а mode1 system of three isomers (butene 
isomerization). For the ana1ysis we will сЬоове that vertex JVO for which the 
entire mавв ofthe system is concentrated in Аз: N j = N2 = О, Nз = 1.Incom­
ing edges correspond to the two possibilities: N j + Nз = 1, N 2 = О [hy­
potenuse in Fig. 9(а)] and Nz + Nз = 1, Nj = О [а vertical cathetus in Fig. 
9(а)] designated ав d j and d 2 , respectively. А minimum G оп d j is obtained 
at the point with NjjNs = Nf jNt, i.e. at N1 ~ 0.21 and Ns ~ 0.79, and it is 
equal to 

М) ~ 0.211n 1.47 + 0.791n 1.47 -1 

ln1.47 -1 
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Fig. 9. Canstructian af the unattainability regian far the system af three isamers. 

Similarly, the minimum G оп d2 is achieved,at N2 /Nз = N~/Nt at а point 
N2 ~ 0.37, Nз ~ 0.63 and it is equal to 

М2 ~ 0.371n 1.16 + 0.631n 1.16 -1 = ln 1.16 -1 

It is evident that М2 < М1 , hence гС!"") = М1 • А corresponding levelline for 
G is shown in Fig. 9(а). The points е1 and е2 are also shown оп the figure. 
Their convex envelope is а vertically hatched tetragon. Horizontal hatches 
mark its conjunction with а multitude specified Ьу the inequality 
GCN) ::;:; e(f;ro). The entire region ofthe point N* is w-invariant. It is the other 
parts of the врасе near f;ro that is v(f;ro) , i.e. the desired "unattainability 
region". 

W е will now describe the construction of ап "unattainability region" 
near the arbitrary multitude of vertices. Let it Ье а multitude Е for the 
vertices of the reaction polyhedron. Р(Е) will Ье а multitude of 15 edges 
connecting vertices from Е, and К(Е) are those connecting elements Е with 
vertices not belonging to Е. Ав before, let Md = min G(N) Ье а minimum G 

NEd 

оп the edge d in the reaction polyhedron. Ап analog of e(f;ro) for the mul-
titude Е will Ье 

maxMd г(Е) = dEK(E) (109) 

that is the maximum Md for the edges going out from Е. Let us eliminate from 
Р(Е) аll the edges for which M d ::;:; в(Е). These edges are "cut" Ьу the surface 
ofthe G(N) = г(Е) level. It'the resultant graph is connected, its vertices are 
elements of Е and its edges are those Р(Е) for which Md > в(Е). We will 
construct ап "unattainability region" V(E) which cannot Ье obtained Ьу 
conjunction of "unattainability regions" for the sub-multitudes of Е (а 
graph is called сошiесtеd if, passing along its edges from апу vertex, опе сап 
get into апу others). Let us choose оп each edge d Е К(Е) а point ed for which 
G(ed) = в(Е). Ifthere aremore than опе such points (i.e. two), we will choose 
that which is nearer to the vertex from Е to which this edge belongs. А 
multitude of polyhedron vertices not belonging to Е is designated ав Е. Let 
us construct (describe Ьу linear inequalities) а convex envelope of the 
multitude 
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(110) 

Ьу joining Е with the multitude of points ed at d К(Е). Let this convex 
envelope Ье set Ьу the inequalities l/Й) > rj(j = 1, ... , q). ТЬе "unattain­
ability region" V(E) corresponding to Е сап Ье described as folIows: N lies 
within У(Е) when, and only when, С(Й) > в(Е) and there is at least one j 
(1 <'{j .:::; q) when ЦЙ) < rj, i.e. 

У(Е) = {NI С(Й) > 8(Е) 

and for at least one j (1 .:::; j .:::; q) Ij(N) .:::; rj} (111) 

ТЬе results of the analysis for а system of three isomers for various Е are 
represented in Fig. 9(а)-(Ь). Here, а convex envelope for the finite multitude 
(106) is vertically hatched and its union with the multitude С(Й) ~ в(Е) is 
horizontally hatched. ТЬе whole of the hatched multitude is ш-iпvаriапt and 
the unhatched region is just V(E). This example of only four multitudes 
makes it possible to construct the "unattainability regions" that would not 
Ье а union of those for submultitudes. Three multitudes еасЬ contain one 
vertex and а fourth [Fig. 9(d)] includes two vertices, corresponding to the 
cases when the entire mass is concentrated either in А1 or in Az. 

Thermodynamic limitations оп the non-steady-state kinetic behaviour 
сап Ье formulated as follows. If the initial non-equilibrium composition is 
Й(О), then during the reaction а composition N(t)(t > О) for which 
C(N(t» ~ С(Й(О» cannot Ье formed. In addition, it is also impossible that 
there Ье formed compositions lying in those "unattainability regions" to 
which N(O) does not belong (оп е must select the whole of "unattainability 
regions" whose construction is described above). In other words, there exist 
several "unattainability regions." For апу initial composition Й(О) there 
are "unattainability regions" to which it does not belong. During the reac­
tion, а composition from these regions cannot Ье formed. In addition, for the 
compositions N formed, the condition С(Й) ~ G(No) must Ье fulfilled. 

Thus for closed systems, proceeding from the known equilibrium composi­
tion and initial conditions, we сап find а thermodynamically forbidden 
region, i.e. that which would Ье "non-admittable" for the solution ofkinetic 
equations (18). It is never possible to get from one vertex of the reaction 
polyhedron into some accurately determined vicinity of the other. In par­
ticular, if some initial substance is А (100%), the reaction cannot produce а 
reaction mixture that would Ье some other substance completely (100% В) 
and also have higher content compared with the given content ofB. For one 
reaction, concentrations that cannot Ье exceeded are equilibrium. For 
several reactions the case is more complicated. 8imilar "unattainability 
regions" exists near certain faces and, more generally, near multitudes of 
vertices and edges of the reaction polyhedron. 

80, what are the thermodynamic limitations оп composition variations in 
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the course of а complex reversible reaction following воте unknown те­
chanism? 

(1) Starting from positive initial data, we cannot get into boundary points, 
i_e. during the reactioIl we cannot obtain а reaction mixture that would not 
contain at least опе of the initial substances. (This was shown in ref. 32 оп 
the basis ofWei's axiomatics [3О].) 

(2) Boundary points cannot Ье the w-limit for the solutions starting from 
positive initial data. 

(3) There are по damped oscillations near the point of detailed equi­
librium. 

(4) According to а given position of the detailed equilibrium point and а 
given initial composition, we сап construct, using the аЬоуе procedure, а 
region of compositions that сап not Ье formed during the reaction. 

2.4 LIMITATIONS ON NON-STEADY-STATE КINETIC ВЕНАVЮUR IMPOSED ВУ ТНЕ 
REACTION MECHANISM 

Let the position of the equilibrium point and the reaction mechanism Ье 
known. In this саве we сап иве the available information (а list of steps and 
equilibrium constants k: /k;) to construct stronger, compared with ther­
modynamic, limitations оп the non-steady-state reaction behaviour. With­
out going into technical details, let ив describe the construction of these 
limitations through а simple example, the вате isomerization of n-butenes 
over AI2 0 s. Let ив divide the reaction polyhedron Ьу equilibrium surfaces 
for individual steps. The regions obtained will Ье referred to ав compart­
ments [Fig. 10(а)]. Inside each compartment, аН steps follow а definite 
direction, i.e. the rate of each step has а fixed sign. Showing а direction the 
reaction follows Ьу ап arrow, every compartment сап Ье prescribed Ьу the 
oriented graph of predominant directions ав shown in Fig. 10(а). Here 
А) ---+ А2 теапв, for example, that for апу composition from this compart­
ment the reaction А) ..-:± А2 proceeds towards the formation of А2 from А) or, 
which is the вате, ш) > О. It сап Ье noted that the graphs for аН the 
compartments shown in Fig. 10 are acyclic, i.e. there are по schemes 

This is а general fact. For monomolecular (or pseudo-monomolecular) reac­
tions the graphs corresponding to compartments are acyclic. А similar 
property for the systems having either ы- or termolecular reactions is more 
complex. It сап Ье form1.llated ав foHows. If every edge in the graph of 
predominant reaction directions for воте compartment is ascribed to а 
positive "rate" constant k and chemical kinetic equations are written with 
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r л={1,-1,1} 

л={-1,-1,1} 

~ 
л= {-1,1,-1} 

~ 

(Ь) 

Fig. 10. System of three isomers А, +± А2 +± Аз +± А,. (а) Compartments and predominant 
direetions of reaetions; (Ь) eonstruetion of the minima! (()·invariant set JC1V"); (е) sets J(JIt') for 
the reaction meehanisms А2 +± Аз, Аз +± А, (horizontally hatehed) and А, +± А2 , Аз +± А, 
(vertieally hatehed). 

such irreversible steps, then at t --+ 00 а mixture, which is non-reactive ас­
cording to this scheme, will Ье obtained. For example, for the scheme 

А! + А2 --+ Аз 

Аз --+ А2 + А4 

the equations wilI Ье of the form 
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Й2 k 1 N1 N 2 + kzkз 
At t --+ 00 we will obtain а non-reactive mixture of N2 and N4 • А graph ofthe 
predominant directions corresponds to the direction of the conversion of the 
initial components either into опе substance or а mixture of non-reactive 
components. 

ТЬе other way to describe this property is as foHows. А сопуех envelope 
for the multitude of stoichiometric vectors for the edges in the graph of 
predominant directions written as ifthey were direct reaction steps does not 
contain zero, i.e. there are по such non-negative ,1.1, ••. , ,1.q as 

,{1 + ... +,{q = 1 

,{1 У1 + ... + ,1.q Yq = о 

It сап also Ье interpreted in terms of the bipartite graph for the reaction 
mechanism (вее Sect. 1.3). 

In еасЬ compartment а sign for аН the щ.u has Ьееп determined, i.e. we 
know which of the inequalities Шв. u > О or Шв,u < О take place for the 
compositions lying inside it. Therefore in апу compartment we сап write 

Ув,u Шв,u = I Шв,u IYs,u sign Шв,u 

where sign Шв,u = 1 if Шв,u > О and - 1 if Щ,u < о. А value for sign Шв,u is 
dictated only Ьу the compartment and does not change ifwe vary а composi­
tion inside it. Since the rate constants are unknown апа we ао not know 
I Шв,u I either, we сап nevertheless write 

dN '\'~' '\'~. 
--- = SL...lwslYsSlgnws + VL...lwulYuSlgnwu 
dt 

Ттв implies that т! ai 1- ев inside а сопуех сопе generated Ьу the vectors 
У and sign Шв,u: dN/dl is а linear combination of these vectors with 
p6sitive coefficients. It is possible to construct such а сопе for аН compart­
ments [Fig, 10(а)]. Since dN /ctt belongs to this сопе, for апу initial соп­
ditions 1Jo а region сап Ье constructed inside of which lies а solution for 
kinetic equations that emerges from this point at t = О. For this purpose it 
is necessary to construct а convex сопе generated Ьу the vectors Ув,., sign 
Шв,u from this pointas if it were zero. If this сопе is continued ир to the 
compartment boundary [Fig. 10(Ь)], it is necessary from the intersection 
points to construct cones corresponding to the neighbouring compartments, 
etc. А procedure to construct висЬ а set for а system of three isomers is 
shown in Fig. 10(Ь). ТЬе first сопе restored from 1Jo is not hatched. А set 
obtained at а весопа step from the boundary of neighbouring compartment 
is hatched horizontally, а third step is shown Ьу vertical hatches апа the 
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last, the fourth опе is completely black. After the fourth step по new mul­
titudes are obtained and the construction is completed. The obtained set is 
w-invariant and contains а positive semi-trajectory emerging from point No. 
А finite character ofthe construction procedure is а general fact that is valid 
for апу system. Its proof is cumbersome and hence is omitted. 

The multitude constructed for point No, and designated as J(No), is w-in­
variant for аН systems of chemical kinetic equations obtained in accordance 
with the mechanism prescribed and having Й* as а PDE. Moreover, it is 
minimal among the multitudes possessing this property, i.e. if а multitude 
that is w-invariant for аН systems with а given reaction mechanism and ап 
equilibrium point, contains No, it also has J(No). In the general case, it is 
constructed ав foHows [33J. 

(1) For each compartment, а signature, i.e. а series of А5 • numbers (оп е for 
each step), А5 • = sign Ш5 • is written. This multitude is de~oted as Л and the 
correspondi:n"g closed co~partment as Рл . РЛ consists of those N for which 

РЛ = {NI А5,.Ш5,. ~ О for аН values of s, ст} 
(112) 

(2) Each compartment is associated with а сопуех сопе Qл generated Ьу 
vectors А5,., У5,.; this сопе consists of vectors of the type 

(113) 
5,. 

Where аН Х5,. ~ О and summation is performed along аН reactions (for аН 
values of s, ст), It is necessary to specify а сопе Qл Ьу linear inequalities, This 
is ап established problem of linear programming (see, for example, ref, 31) 
and we will omit the methods of its solution. Let these inequalities Ье found 
ав lf(N) ~ О, where lf(N) are linear homogeneous functions. 

(3) Ап operation is constructed that associates each closed multitude М 
from а reaction polyhedron with the other опе Jo(M) 

Jo(M) = U (((РЛ n М) + Qл) n РЛ ) (114) 
л 

Here it is necessary to find for every compartment Рл а multitude РЛ n М 
consisting of those points М that lie in Рл . Then the multitude (Рл n М) + 
Qл is constructed. It consists ofthe points of N + q type, where N Е РЛ n М, 
q Е Qл. For every N Е РЛ n М the multitude N + Qл is prescribed Ьу the set 
of inequalities lfG) ~ lf(N), therefore the multitude М + Qл сап Ье des­
cribed ав 

(РЛ n М) + Qл = {N/such N' Е РЛ n М exists as lf(N) ~ lf(N') 

for аН valuesof j} (115) 

(РЛ n М) + Qл comprises those N for which there exists N' Е РЛ n М 
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satisfying the condition l! (Й) ~ l!(N') at any value ofj. In particular 

N" + Qл = {NJlt (Й) ~ lt(N") at any value of j (116) 

In the construction the internal points of (РЛ n М) сап Ье eliminated. It 
suffi.ces to take only boundary points 

(РЛ n М) + Qл = д(Рл n М) + Qл (117) 

where д is the БутЬоl for transition.to the boundary. If М is prescribed Ьу 
а finite (alternative) set of inequalities, (РЛ n М) + Qл сап also Ье given Ьу 
inequalities, even if the initial' inequalities are по more linear. Since the 
method of their construction is cumbersome, it is omitted here. After con­
structing (describing Ьу inequalities) (РЛ n М) + Qл, it is necessary to take 
its intersection with РЛ (to add аН sets of inequalities with w А ~ О for 
аН 8,0"). б,а ',а 

(4) А minimal closed w-invariant set containing N" is constructed аБ 
follows. At first Jo({N"}) is described, then Jo(Jo({N"}», Jo(Jo (Jo ({N"} »), 
etc. This process will Ье interrupted after а finite number of construction 
steps. In Fig. 10(Ь) а white area in the outlined region is Jo({N"}). Together 
with а horizontally hatched section it forms Jo (Jo ({N"} », i.e. а horizontally 
hatched part - points belonging to Jo (Jo ({N"} » but lying outside Jo({N"}). 
Similarly, а vertically hatched area belongs to Jo(Jo(Jo({N"} »), does not 
enter Jo (Jo ({N"} », and а black area is that of new points in J:({N"}) 
compared with Jo(Jo(Jo({N"} »). During the next step of construction по new 
points appear, i.e. the construction process is interrupted and 
J(N") = Jo

4({N"}). In justice, it must Ье emphasized that at finite times 
closed system behaviour сап Ье rather complicated, i.e. only their limit 
behaviour is simple, An example is the famous Belousov-Zhabotinskii reac· 
tion [13]. 

Multitudes J(N") change greatly depending оп the reaction mechanism. 
Therefore we сап test (verify) hypothetical reaction mechanisms using these 
multitudes. If а kinetic сшуе N(t), Й(О) = N", is obtained, we сап эау 
confidently that, when N(t) is within experimental ассшасу and given limits 
of the trial, lies outside J(N"), а hypothesis оп the reaction mechanism, 
according to which this J(N") is constructed, must Ье eliminated. Multitudes 
J(N") for а system of three isomers and various hypothetical (two-step) 
reaction mechanisms Аз <=2 А1 , А2 <=2 Аз (horizontal hatches) and Аз <=2 А!, 

А1 <=2 А2 (vertical hatches) are illustrated in Fig. 10(с). Аэ сап Ье seen, the 
differences between these multitudes are distinct; they do not even intersect 
(to Ье more precise, they intersect along the boundary). 

Thus, ош knowledge of reaction mechanisms and equilibrium constants 
makes it possible to construct limitations оп the unsteady-state behaviour of 
chemical reactions. These limitations are essentially stronger compared 
with ordinary thermodynamic limitations. Since they (in contrasted to ther­
modynamic limitations) depend оп the reaction mechanism, their validity 
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сап Ье tested for experimental сигуев. ТЬив hypothetical reaction mechan­
isms сап Ье tested without calculating rate constants. 

In conclusion of the discussion of reaction dynamics in closed systems, it 
сап Ье suggested that the principal problems here have been solved: closed 
systems 'Ъауе been closed". ТЬе саве is different for open systems. Progress 
in their study has been extensive. А large number of publications are devot­
ed to the analysis of various dynamic peculiarities (multiplicity of steady 
states, self-oscillations, stochastic self-oscillations) in various open systems. 
It сап hardly Ье said that most pr0blems here are completely clear. 

3. Formalism о! chemical kinetics for ореп systems 

3.1 КINETIC ЕQUАТЮNS FOR OPEN SYSTEMS 

If, in the system examined, we сап neglect spatial differences in the 
reactant concentrations, а continuous stirred tank reactor (CSTR) model for 
а reactor сап Ье used. А set of equations is constructed accounting for the 
process of the totality of reactions under examination at а constant volume. 
It is then supplemented Ьу а new factor which accounts for the substance 
exchange with the amment medium. Ав usual, concentration equations are 
used that are analogues to those for substance quantities since the reaction 
system volume is assumed to Ье unchanged 

Vout -'"g 

у с 

(118) 

->-g --->..gas ---'-8 ---,-sur 
where у, == у, ,у, == у, 'Vin and Vоu' are the space velocities for the input 
and output flow of the reaction mixture, respectively, and с7п is the vector 
whose components are the concentrations of the gaseous substances in the 
reactor input. 

When considering catalytic reaction, the gas-phase processes occurring 
without а catalyst are often neglected. Equation (118) then takes the form 

"Б g = 

(119) 

It is often suggested (without sufficient grounds) that Vin = Vout' whereas 
both volume and pressure remain unchanged during the reaction. Strictly 
speaking, any catalytic reaction proceeds with changeable volume since 
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gases are partly adsorbed оп the catalyst surface. If the pressure is assumed 
to remain unchanged, we must have Uin of Uout . Sometimes changes in volume 
associated with adsorption and desorption сап Ье neglected, particularly 
under steady-state conditions. When considering unsteady-state behaviour 
опе must remember that, generaIly speaking, Uin of Uout • This difference is 
particularly distinct for the systems with low gas quantities or large catalyst 
surfaces and also for the "weakly ореп" systems (вее below). 

We will make ап attempt to determine Uout from the equation of state 
assuming the pressure to remain unchanged 

Р = RT I ст = const. dP = о 
dT 

Under isothermal conditions we obtain from eqn. (119) 

(120) 

(121) 

Ав usual, the input concentrations are normalized in the foIlowing natural 
way 

Р I c~· = 
i ,п,' RT 

In this саве eqn. (121) for Uout takes the form 

Let us designate 

11: _ RT" g 
s - р L,. Ysi , 

(122) 

(123) 

(124) 

where V. is the change in the gas volume for the sth step (at а unit rate of 
this step). 

Taking into account eqn. (123), kinetic equations (119) сап Ье written 

~g = 

(125) 

These equations are applicable only when the Uout value found in accord­
апсе with eqn. (123) is non-negative 

(126) 

Condition (126) is automaticaIly fulfiIled if uin is sufficiently high 
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V;П > 8 тах ( - ~ ш,(с )v;) (127) 

Here the maximum is taken over аН possible concentration values at а given 
pressure and balance limitation. 

If condition (126) is not fulfilled, in the solution of eqn. (119) we сап have 
the саве when vout < О. In this саве there is а decrease in the volume of the 
mixture due to the reaction being faster than its possible increment Ьу virtue 
of the supply of substance from outside. Remaining in the framework of this 
model, we сап eliminate а negative'value for vout , but assuming that Vout = О 
at 

V;п + 8 I ш,(с)У'; < о (128) 

Otherwise the model must Ье modified. For example, eqn. (119) сап Ье 
supplemented Ьу the equations accounting for the pressure drop of the 
system. 

Let ив show that, in the steady state found in accordance with eqns. (119) 
and (123), the condition (127) for the non-negative V out is fulfilled. If 
fg = 1;' = О, then according to eqns. (119) and (123) we obtain 

(
8 V ) 8 С. V;п 

cg 11 ~ ш, v; + v = 11 ~ У: ш, + '", 
(129) 

8" ~' 
О = 11L... ysws 

s 

Vectors у, must satisfy balance limitations. For example 

n 

I ЩУ,i = О 
i= 1 

where Щ is the molecular weight of substance A i , if A i is the gas-phase 
components, or the molecular weight of а surface substance minus the 
molecular weight of the catalyst (:Е;' _ 1 щN; is the global тавв of the gas in 
the system and of the adsorbed gas). Using this limitation and adding 
equalities (129) with соеfПсiепts щ, we obtain 

" g(8 " v: Vin) _ Vin" L... mici 11 L... ш• s + V - V L... mici,in 
" , 

or 

g(8" v: vin\ _ g Vin 
р 11 '7 w s , + v) - Pin V 

where pg and pfn are the gas densities in the reactor and its input, respective­
ly. If V;п Pfn # О (its equality to zero indicates that the. system is closed), then 
pg # О and for the steady state we obtain а relationship between vin and vout 



VinPfn 
Vin + S L Ш, v. = Vout = --g-

s Р 
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(130) 

This corresponds to the fact that, under steady-state conditions, the input 
and output mass flows a:r;e equal. 

Thus to examine steady states, eqn. (123) сап Ье used without limitations 
since it does not result in negative values of Vout ' 

Ав ап example, let us give equations corresponding to two catalytic 
reactions, namely the simplest reaction of catalytic isomerization and the 
oxidation of СО (оп Pt). 

Example 5. The substances are represented Ьу А1 = А, А2 = В, Аз = Z, 
А4 = AZ, and А5 = BZ in the reaction mechanism (1) А + Z +Z AZ, (2) 
AZ +Z BZ, and (3) BZ +Z В + Z or Ьу Ан in the mechanism А1 + А5 +Z А4 , 

А4 +Z А5 , and А5 +Z А2 + Аз. According to the law of acting surfaces, 
Ш1 = k: С1СЗ - k1 С4 , Ш2 = k; С4 - k:; С5 , and wз = k; С5 - k:; С2 СЗ . There are 
по limitations оп the constants associated with the principle of detailed 
equilibrium; аН vectors Ys are linearly independent 

уз 
1 

---"'-5 ---,,-S 

Уl Ш1 + У2 Ш2 + УзWз 
or 

WЗ 

Unlike closed systems (see Sect. 1), the law of conservation, including gas 
quantities, cannot Ье used. The system is ореп with respect to gas and it is 
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for this reason that the balance С! + С2 + Сз + С4 + С5 = const. cannot Ье 
applied. As to the law of catalyst conservation Сз + С4 + С5 = const. is valid 
since catalyst is neither introduced nor removed from the system. 

Equation (123) for vout takes the form 

Vout = vin + S(~Wj + V;WЗ ) 

During the second step, the volume is constant since gas does not take part 
in it at аН. Changes in the volumes ~ and V; for the first and third steps are 
equal 

~ 

FinaHy 

RT 
Р 

RT 
Р 

wjRTS wзRТS 
= v· - --- + ---

ш Р Р 

[recaH that we proceed from the normalization condition (124): LC, in = Р! 
RT]. ' 
Ап assumption of constant global gas pressure in the CSTR gives опе 

more law of conservation, i.e. С! + С2 = const. 
The laws of conservation for the catalyst amount Сз + С4 + С5 = Ь ! = 

const. and the gas pressure С! + С2 = Ь 2 = const. along with the natural 
conditions of non-negativity for С account for а convex polyhedron. This 
polyhedron determined Ьу fixed values of the balances, in this саве catalyst 
and pressure balances, is а balance polyhedron 'Д. Unlike the polyhedron П, 
the structure of the balance polyhedron ПО is, ав а rule, rather simple 
(formaHy ПО is а particular саве of reaction polyhedra). If there exists only 
опе type of active site for the catalyst and accordingly опе law of conserva­
tion with the participation of concentrations of intermediates, then ПО is а 
product of two simplexes По(gаs) and ПО (surf). The dimensions of По(gаа) 
and ПО (surf) is а unit lower than the number of the corresponding substan­
сев, gaseous or those оп the catalyst surface. Thus in the саае under соп­
sideration, ПО consists of the vectors 

С 
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_g [C1] _ _5 [СЗ] where the vector С = C

z 
lies in the simplex Do(gas) and С = :: 

enters into the simplex Do(surf). Do(gas) consists of those 

[Cl] _ 
C

z 
for which С1 + Cz = bz, С1 ;?о О, CZ ;?о О [Fig. 11(а)], and Do (surf) 1В 

[ сз] . 
composed Ьу those :: for which Сз + С4 + С5 = b1 , Сз ;?о О, С4 ;?о О, and 

С5 ;?о О [Fig. 11(Ь)]. Do(gas) is а one-dimensional simplex (segment) and по 
(surf) is а two-dimensional опе (triangle). 

Example 6. The catalytic oxidation of СО оп Pt. The substances are 
represented Ьу А1 = 02, А2 = СО, Аз = COz, А4 = Pt, А5 = PtO, and 
As = PtCO. А detailed mechanism will Ье а combination of the impact 
(Eley-Rideal) and adsorption (Langmuir-Hinshelwood) mechanisms (1) 
А1 + 2А4 <=± 2А5 , (2) Az + А4 <=± Ав. (3) А5 + Ав ..... Аз + 2А4 • and (4) 
Az + А5 ..... Аз + А4 • 

Limitations оп the rate constants imposed Ьу the principle of detailed 
equilibrium (вее Sect. 2) have Ьееп fulfilled, since steps (3) and (4) are 
simultaneously taken to Ье irreversible. Stoichiometric step vectors are 

"6: 
сз 

Ь2 
Do(gas) 

Ь2 С, Ь, 

С 5 

(а) 

-g 

Yz 

Yz 

Ь, 

(Ь) 

[ -] 
П] 

Ь, 

С4 

-g 

Уз 

Уз 

п 
[J 

Fig. 11. Balance polyhedra for catalytic isomerization. (а) For gas; (Ь) for surface compounds. 
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In accordance with the law of acting surfaces we Ьауе 

W1 ki'AC~ - k1 C~ 

Ш2 k; С2 С4 - k:; С6 

Wз kЗ С5 С6 

Ш4 k4c2 C5 

Kinetic equations for this system are of the form 

or 

(:1 
S 

(- W 1 V 

С2 
S 
V 

С3 
S 
V 

С4 -2w1 

С 5 2Ш1 

(:6 

Ап equation for Vout is 

- RT 
v; = -р' vz 

Ultimately 

) 
VinC2in VoutCZ 

-ш +-----
4 V V 

RT 
P'~ о 

Remember that here and in what follows we proceed from the condition 
(124), i.e. I Ст'iп = P/RT. 
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The laws of conservation for the catalyst concentration and gas pressure 
are expressed as: С4 + С5 + С6 = Ь ) = const. and С) + С2 + СЗ = Ь2 = const. 
Therefore а balance polyhedron is а product of two two-dimensional sim­
plices (triangles). 

3.2 "WEAKL У OPEN" ВУВТЕМВ 

Sometimes the literature cites postulations implying that, when the veloc­
ity of ап influx (and correspondingly of ап effiux) of substances tends to zero, 
ореп systems tend to their correspo~ding closed systems, demonstrating а 
similar dynamic behaviour. In fact, this it is not quite true. Ав usual, еуеп 
the right·hand sides of CSTR equations (125) do not tend to those of the 
equations for closed systems. The latter do not contain the summands S/V 
LsWs(C)v.;c

g
• Ап exclusion is the саве when аН v.; values are zero, i.e. аН 

reactions proceed with preserved volume (the number of gas molecules in 
both the right- and left-hand sides ofthe stoichiometric equation is the вате 
for аН steps). For catalytic reactions it never holds true since in every саве 
there are steps with а variable volume, e.g. an adsorption step. But, еуеп in 
the саве when аН v.; values are zero, the transition from а closed to ап ореп 
system cannot Ье treated ав а continuous process. This is due to the fact that 
closed systems have balance relationships (linear laws of conservation). In 
open systems еуеп those having low flow velocities, the balance relation­
ships involving the participation of gas-phase components are not fulfiHed. 
This fact сап Ье interpreted as foHows. In the transition from open to closed 
systems а bifurcation occurs and the point Uin = О is that of bifurcation. 

Let us consider ореп systems at low Uin in two stages. First let us assume 
that both Uin and uои! are low and time-dependent, but are such that the gas 
pressure in the reactor is in the range Ртах > Р > Pmin or, equivalently, 
Ьтах > L СТ > bmin > О, where bmin = Pmin/RT and Ьтах = Pmax/RT. This 
agrees well with reality, i.e. еуеп if we want to, we cannot obtain а pressure 
in the reactor which would Ье either equal to zero or higher than воте very 
high Ртах. 

Kinetic equations in "weakly" ореп systems will take the form* 

~c' g S " ~g ~ Uin (t)Cin uои! (t)c
g 

VL. /'вШв(С) + --V- - --V-
s 

(131) 

where, in accordance with the assumption, UinL i Ci.in < г and UoutL i СТ < г. 
Let G Ье the Lyapunov function corresponding to а closed system at а 

constant volume (вее Sect. 2). We will examine its behaviour using the 
solutions of eqn. (131). 

* We consider here reactions оп the surface. The general case is examined in а similar way. 
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О· S" 1 (ш:) " дО (VinCi'in VoutCi) = - '-- Ш n - +t..- -----
s S ш; i acf V V 

(132) 

Using the condition of smallness of vin LiCi,in and vout LiCi,out we obtain from 
eqn. (123) 

. (ш+) jaGj G :::; - S I wsln ~ + е I -д ~ 
s W s ~ C~ 

(133) 

In each reaction polyhedron, the region specified Ьу the inequality 

~ (ш+ (С») j дО! - SIws(c)ln ~ + eI дfi < о 
s W s (е) i Ci 

(134) 

contains the entire reaction polyhedron, except а certain e-small vicinity of 
the PDE and probably а small vicinity of some boundary points of the 
polyhedron. The latter is attributed to the fact that 

дО = Vln (Cf) 
acf cf* 

and tends to СХ) at cf --> О. Let us suggest that the system has по boundary 
equilibrium point (it is essential). There exist such to > О and r > О that, in 
апу reaction polyhedron where the inequalities Ьтах > LiCf > bmin are ful­
filled for some its points, а solution of the kinetic equations for the closed 
system c(t) with the initial conditions с(О) lying in this polyhedron, belong 
at t > to to the region specified Ьу а Щс) < д type of inequality and loc­
alized at а distance > r from the polyhedron boundary. This follows from the 
fact that, in the аЬвепсе of boundary equilibrium points, а positive PDE is 
the only possible w-limit опе for the solutions of chemical kinetic equations 
describing closed systems. It is known (see, for example, ref. 34) that, during 
а finite period of time, the solutions of differential equations are соп­
tinuously dependent оп their right-hand sides, i.e. they vary slightly with 
втаН changes of these parts of the equation. It is therefore possible to find 
such ео > О since, at О < е < ео , а solution for eqns. (131) describing а 
"weakly ореп" system at t > to (and hence at t = to since а choice of the 
initial time instant changes nothing) lies in the region specified in the 
reaction polyhedron corresponding to c(to) Ьу the О(с) < д' -type inequality 
(д' сап already differ from д). This region is localized at а distance d > r/2 
from the polyhedron boundary (for estimates, опе сап also take апу other 
positive number that is lower than r). It сап Ье interpreted ав follows. The 
smaller the value of е, the closer is а solution of eqns. (131) for ореп systems 
(at а segment [О, to ]) to the corresponding solution for closed systems. 
Choosing а sufficiently втаН value of е, it is possible to show that c(to) for 
ап open system willlie in the "region required" specified Ьу any prescribed 
inequality О(с) < д' with д' > д. 
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These regions in аН reaction polyhedra сап Ье described Ьу the same 
inequality. For this purpose let иБ recall (Sect. 2) that we constructed С(с) 
using ап arbitrary PDE not necessarily lying in the examined reaction 
polyhedron and showed that this function is а Lyapunov function for апу 
reaction polyhedron. Now let иБ introduce опе more Lyapunov function 
which differs from the previous опе in every reaction polyhedron Ьу а 
constant, depending, nevertheless, оп this polyhedron. Let иБ prescribe а 
function с*(с) whose value is PDE accounting for the initial conditions с 
(lying in the Бате reaction polyhedron). Let иБ determine 

С(с) = С(с) - С(с*(с» (135) 

Now С(с*) = о for апу PDE с* irrespective of which reaction polyhedron it 
belongs to. Using а continuous dependence ofthe solution си) for eqns. (131) 
оп the right-hand side of these equations, we сап find for апу д > О such 
to > О and 80 > О that, at t > to and О < 8 < 80' the solution c(t) lies in the 
region prescribed Ьу the inequality С(с) < д. 

PDEs form а surface in the multitude of positive vectors. А multitude 
formed Ьу the inequality С(с) < д is а certain vicinity of this surface 
narrowing towards it at д -+ О. At first, with sufficiently БтаН 8 values, the 
solution of eqns. (131) behaves like а closed system. For а finite period oftime 
it gets into а БтаН vicinity ofthe PDE surface, but at the Бате time remains 
close to the solution of closed systems. In this vicinity motion is controlled 
Ьу the substance exchange with the environment and under our assumptions 
it сап Ье rather complicated. The solution, however, will never leave this 
area if 8 is sufficiently БтаН. Here we proceed from the suggestion that closed 
systems have по boundary equilibrium points. But if they do exist, then Ьу 
opening а system they сап Ье made stable. The area oftheir attraction region 
tends to zero at 8 -+ О. Hence, the presence of boundary points сап also Ье 
а source of bifurcation when "opening" а system. 

Let иБ consider the саБе of homogeneous system when Vin and Vout are low 
and constant. Let Ь(с) Ье а linear function of the concentrations preserved 
in а closed system. Then for the open system we have 

(136) 

and аН summands containing у, and ш, reduce to zero in accordance with the 
law of conservation Ь(с) = const. for а closed system. Equation (136) is 
differential with respect to ь(С). After its solution we obtain 

At t -+ 00, we have Ь(Си» -+ Vin b(Cin)/Vout and this result is independent of 
the БтаНпеББ of vin and vout ' It is only necessary that they will Ье constant 
and the system homogeneous. In the саБе where Vin and Vout are sufficiently 
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low and с(О) is not а boundary PDE, motion takes place at t ---+ 00 in а втаН 
vicinity ofthe PDE lying inside the reaction polyhedron that corresponds to 
the balance relationships 

(138) 

We know that а PDE is stable as а linear approximation (see Sect. 2). Whence 
from eqns. (137) and (138) we establish that, at sufficiently low Vin and Vout and 
t ---+ 00, а solution ofthe kinetic equations for homogeneous systems tends to 
а unique steady-state point localized inside .the reaction polyhedron with 
balance relationships (138) in а small vicinity of а positive PDE. If 
ь(с(о)) = b(Cin) Vin/Vout, then at low Vin and vout the function c(t) is close to the 
time dependence of concentrations for а corresponding closed system. То Ье 
more precise, if Vin ---+ о, Vout ---+ о, Vin/Vout, с(О), Cin are constant and с(О) is not 
а boundary PDE, then we obtain тах IIc(t) - Се] (t) 11 -> о, where се! и) is the 
solution ofthe kinetic equations for closed systems, Се] (о) = с(О), and 1111 is the 
Euclidian norm in the concentration space. 

3.3 STAВILIZATION АТ НЮН FLOW VELOCITIES 

For homogeneous (completely flowing) open systems а steady-state point 
becomes unique and stable at а very high constant velocity of the flow [35]. 
In this case the concentrations of gas-phase components rapidly Ьесоте 
almost constant and their ratios are close to those for the input mixture. 
This fact is independent of а concrete type of the ш(с) function. То confirm 
this postulate, let us consider eqns. (125) for а balance polyhedron ПО. Since 
Uin is very high, the inequality (127) is fulfilled automatically and we сап 
write 

с 
Р(с) + Vin(Ci'V - С) 

where Р(с) is independent of vin 

Р(С) = ~ ш, [7, - R;C (~Y'i)] 

(139) 

As ПО is а convex restricted w-invariant set, it contains at least опе steady­
state point of eqn. (139). Note that, if starting from some vin , for апу two 
different solutionsof eqn. (139) lying in ПО, c!(t) and с2 Щ, the function 
IIc! (t) - с2Щ 11 is monotonically reducing to zero, the steady state is unique, 
and апу solution lying in ПО tends to this steady state at t ---+ 00. It is the 
distance to this point that will Ье the global Lyapunov function for eqn. (139) 
in ПО. Let us investigate at which values of Vin the function Ilc!(t) - с2Щ 11 
decreases monotonically. 
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(140) 

Here (,) is the ordinary scalar product that is the sum of coordinate pro­
ducts: (х, у) = L XiYi; [[ [[2 = (,). 

Since the inequality (140) must Ье fulfilled for arbitrarily close с1 and с2 

values, we obtain 

~ ~ ~ ~ ~ ~ ~ ~ ~ v· 
(А с, p~ А с) - (А с, А с) {; < о (141) 

where 3 с is аnу non-zero vector satisfying the condition Li3ci = О, as 
vectors of the concentrations с1 and с2 must correspond to the same pressure 
(they lie in the same Do ), and Р'; = (aFi/ac) is the matrix ofpartial deriva­
tives at the point с. 

Due to the convexity of Do (here it is merely а simplex), the local condition 
(141) is suffi.cient to claim that eqn. (140) is valid. Inequality (141) is fulfilled 
if the maximum eigenvalue Аmах of the matrix yz (р'; + р';Т) is lower than 
Vin/Vat аnу с from Do . 

[
1 ~ ~ Т ] Аmах 2" (Р; + Р; ) for аnус Е Do (142) 

Аn accurate formula for the upper limit of these Аmах in Do cannot Ье given. 
Неnсе it is recommended that individual vin values are found for every 
kinetic model. The stability of the matrix 

~ (р'; + р';Т) - (v{; )1 
сап Ье tested, for example Ьу using the Routh-Hurwitz inequalities. 

We сап also present simpler estimates for Vin when the inequality (142) is 
fulfilled and Do contains а unique and globally stable steady-state point. Let 
us apply the Hirsch theorem [29, р. 185] 

[ ' [ ~ тах / дР, aFJ / lI.тах < n.. + 
2 ], ~ aCj дс, 

(1 ,,;; i, j ,,;; n) 

(Note that n is the number of substances.) 
It follows that а suffi.cient condition for the validity of eqn. (142) is 

v· > -n - +-V тах / дР, aFJ / 
ln 2 i, j, с aCj дс, 

It is also possible to apply other estimates for the eigenvalues (see ref. 29, 
рр. 185-222). 
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Thus ifthe flow velocity in а completely flowing (homogeneous) system is 
higher than а certain value, the balance polyhedron contains а unique 
steady-state point that is globally stable, i.e. every solution for the kinetic 
equations (139) lying in 150 tends to it at t -> 00. Note that а critical value 
for the flow velocity at which this effect is obtained сап depend оп the choice 
of balance polyhedron (gas pressure). 
А similar claim for heterogeneous systems is, generally speaking, wrong. 

Indeed, gas concentrations rapidly Ьесоте close to Боте values controlled 
Ьу the balance equations and concentration ratios for the input gas flow. But 
in close proximity to this value апу dynamic behaviour is possible, i.e. а 
multiplicity of steady states, self-oscillations, etc. The surface state сап, 
however, vary in а rather complicated manner. Figuratively speaking, поп­
trivial dynamic behaviour of heterogeneous systems cannot Ье "inhibited" 
(Ьу а heavy flow). 

4. Quasi-stationarity 

80 far the quasi-steady-state hypothesis introduced in 1913 has remained 
the most favourable approach to operating with chemical kinetic equations. 
In short (and not quite strictly), its most applicable version сап Ье for­
mulated аБ follows. During the reaction, the concentrations of some (иБиаllу 
intermediate) compounds are the concentration functions ofthe other (иБи­
аllу observed) substances and "adapt" to their values аБ ifthey were steady­
state values. 

As usual, this hypothesis is associated with the патеБ of Bodenstein and 
8emenov. The latter introduced а concept of partial quasi-stationarity rea­
lized for some intermediates. Christiansen described the history of the pro­
blem аБ follows [36] " ... the first who applied this theory was 8. Chapman and 
halfthe year later Bodenstein referred to it in his paper devoted to hydrogen 
reaction with chlorine. His efforts to confirm his viewpoint were so energetic 
that this theory is quite naturally associated with his пате". 

In 1940 Frank-Kamenetskii made ап attempt to formulate mathematical 
conditions for the applicability ofthis approach [37]. А strict formulation for 
the problem of а mathematical status for the principle of quasi-stationarity 
was suggested Ьу 8ayasov and Vasilieva [38] in terms of the theory of 
singularly perturbed differential equations. 

8ubstantiation for this hypothesis is constructed оп the availability in the 
initial set of differential equations with а Бтаll parameter е standing before 
Боте derivatives. We will write this set аБ 

[(х, у) 
(143) 

е у g(x, у) 
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Sometimes to reduce the system examined to such а form it is necessary to 
равв to воте new (usually dimensionless) variables or to а new time scale. 
For example, if the initial set is of the form 

dx 
8 f(x, У) 

dt 

dy 
= g(x, У) 

dt 

then, assuming that , = 8 t, we obtain 

dx dx 
dt 

В-
d, 

dy dy 
8 -

dt d, 

and 

dx 
f(x, У) d, 

dy 
= g(x, У) В-

d, 

At every fixed value of х we сап examine а system of fast motions 

dy 1 
dt = -; g(x, У) (144) 

when х acts ав а parameter. If at t -> 00 the solution of eqn. (144) tends to 
the steady state Yst(x), it is clear that, Ьу decreasing 8 > О, it сап Ье obtained 
that the solution of eqn. (144) will get into апу given втаН vicinity of Yst(x) 
for апу prescribed time period Т > О. Certainly, in the general саве the 
value of 8 at which it is achieved depends оп the initial conditions and 
parameter х. If it is possible to obtain ап estimate for such в values that 
would Ье valid for а certain region Х and the initial conditions Уо, it сап Ье 
claimed that at 8 = О the solution of eqns. (143) tends, starting from ап 
arbitrary low to > О, to that for the degenerated equations 

х = f(x, Yst(x» 

g(x, У) = о 

У = Yst(x) 

(145) 

Naturally, it holds true ав long ав the solution remains in the area of х and 
У for which the аЬоуе values of 8 were obtained. 

Rigorous conditions at which the solution of the total equation (143) tend 
(at в > О) to that of the degenerated equation (145) are given Ьу the Tik­
ьопоу theorem [39]. Let У = Yst(x), i.e. а continuous and continuously dif-
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ferentiated solution for the equations g(x, у) = о in а certain area х Е Х and 
Yst(x) is an asymptotically globally stable steady-state solution for the вув­
tem of "fast motions" (144): y(t) -> Yst(x) at t -> 00. Then if the solution 
х = x(t) ofthe degenerated system (145) remains in the Х area at О ~ t ~ Т, 
then for any to > О, а solution of the total set (143) [x(t), y(t)] tends to that 
of the degenerated equation (145) [x(t), Yst(x(t»] at 8 -> О uniformly оп the 
segment [to, Т]. Functions x(t) for the total and degenerated system tend to 
each other uniformly throughout the segment [О, Т]. 

Let ив emphasize one typical inaccuracy met in the description of the 
quasi-stationarity hypothesis for chemical systems. It is suggested that the 
rate of changing the amount of intermediate particles (fast sub-system) tends 
to or even equals zero. But this is not true since it is not difficult to obtain 
an expression for у Ьу differentiating the relationship g(x, у) = О and using 
an implicit function theorem 

dg(x, у) 
-d-t-

ag. ag. 
дх х + ду У 

О 

Here in the general саве ag/ax and ag/ay are the matrices of the partial 
derivatives ag;/aXj and agi/aYk' Let ив аввите that alllinear laws of conser­
vation have been eliminated from eqn. (143) and the matrix ag/ay is inver­
sible. Then 

у = _ (~~) -1 ~: х 
and does not depend оп 8 (if с; does not enter into the right-hand side). Thus 
for the solution of а degenerated system, у appears to Ье of the вате order 
ав х (ав usual it is independent of с;). 
А source of this mistake is, in particular, the fact that one does not 

understand that for the solution of а degenerated system the formula 

у = ~ g(x, у) 
с; 

is not applicable since quasi-stationarity is only an approximation. With 
reasonable application of this approximation the errors for x(t) and y(t) are 
of the order of magnitude ав с; but in the expression for у containing а large 
parameter 1/8, they сап appear not to Ье втаll. Thus the rate of change ofthe 
concentrations of intermediates is not obligatorily low compared with that 
for observed substances. It сап Ье (but need not Ье) low compared with the 
rates offormation and consumption for the intermediates, the difference of 
which determine its value. 

The introduction of а quasi-stationarity hypothesis was motivated 
previously Ьу the fact that concentrations of the intermediates are low and 
во are the rates of their variations. First, however, rates are often not low 
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and, secondly, generally speaking а low value of the concentrations does not 
result in а low value of the rates since everything depends оп the ratio of the 
rate constants. This example сап show how an inaccurate (even erroneous) 
approach сап lead to а correct and useful result. 

Specificity of а concrete system accounts for the source of the appearance 
of а small parameter е and for its type. For homogeneous reactions, а small 
parameter is usually а ratio of rate constants for various reactions; some 
reactions are much faster than the others. For just such а small parameter 
Vasiliev et al. [25] distinguished а class of chemical kinetic equations for 
which the application of the quasi-stationarity principle is correct (they 
considered а closed system). 

For catalytic reactions the fast and slow variables usually considered are 
the concentrations of surface intermediates оп catalysts and gas-phase 
reactants, respectively. (In the case ofhigh-vacuum conditions, "а vice versa 
quasi-stationarity" is possible, see below.) But in the equations for hetero­
geneous catalytic reactions (119) 

S I~g ~ 
~g ~g 

cg vincin voutc V Ysws(c) + V V s 

Cs = I Y:ws(c) 

а втаll parameter is not seen at а first glance since SjVneed not have а low 
value, step rates W s are the вате for gas and catalyst and vectors У. have 
components with values amounting to О, 1, 2 and (rarely) 3. А key to the 
solution of this problem сап Ье ав follows. The amount of gas (mole) is 
usually much higher than that of intermediates (mole). Therefore having 
values for their rates of variation, closer in ma~nitude, the concentrations 
of intermediates get into а small vicinity of the steady state (if it is unique 
and stable) more quickly. Assuming that the pressure in CSTR is constant 
and the law of catalyst conservation is unique, we сап write 

const. 

I ci bs = const. 

(а more complicated case in which there are several laws of conservation, 
etc. is considered similarly). 

Let us denote 

N;~t Ь• S 

N;~t bg V 

cg 1Vg 

N;~t 
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8 ЙS 

(146) 
Nt~t 

8 = 
N;ot 
~~t 

~g 

At constant Ь. and bg the rates of steps Щ are functions of с and 8 and do 
not depend оп 8 

W. = ks+ П (crbg)"'i П (ВА}'" - ks- П (crbgi'i П ЩЬ,)Р'i 
i i i i 

The set (119) is rewritten with respect to с ав 

(147) 

8 = ~ I -;;wдg, 8) 
, , 

Let us go to а new time scale , (8/b s )t. We will then have 

~g 

dё 

J, 
(148) 

If at constant S, Ь" bg , 8 -> О and the system of "fast motions" 

(149) 
dt 

has at every fixed cg а unique and asymptotically globally stable steady 
state, we сап apply the Tikhonov theorem and, starting from а certain value 
of 8, сап use а quasi-steady-state approximation. 

Generally speaking, 8 сап Ье tended to zero Ьу various methods without 
assuming S, bs , and bg to Ье constant. In this саве, many different авутр­
totes arise. Their difference is associated with the fact that, at given 8 and 
cg

, the values of w are independent of bs and bg and the equations for "slow 
motions" [the first part of eqn. (148)] contain parameters l/S and bg(S. For 
example, at fixed bg , S and V, bs сап Ье tended to zero: bs -> о. Then the rates 
of elementary reactions which are linear with respect to intermediates, will 
have an order of smallness 8. But if the reaction also involves the participa­
tion of k intermediates ав initial reactants, the order of smallness for w is 
equal to 8k

• Let kmin Ье the lowest order with respect to intermediates that сап 
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Ье met in elementary reactions of the mechanism examined. Then after going 
to а new time scale, at s -> О (оп finite intervals) the reactions having orders 
with respect to intermediates above kmin сап Ье neglected. ТЬе quasi-steady­
state approximation is applicable if Vin = О and the "fast" subsystem (149) 
accounting only for the elementary reactions whose order with respect to 
intermediates is kmin has, for any cg

, а unique and asymptotically globally 
stable steady state. These asymptotes correspond to the case of "infinitely 
diluted" or "greatly contaminated" catalysts (the number of active sites per 
unit surface tends to zero) and were studied in detail Ьу Akramov and 
Yablonskii [40]. Generally speaking, in this case at s -> О the reaction 
"vanishes", i.e. аН ша(с) -> О and cg variations are determined Ьу the sub­
stance flow. 

Let us consider two cases for s -+ О at which reactions "do not vanish". 
ТЬеу are the increase of V (Ь., bg , and S being constant, Ц~, ~ Ц~e) and of 
bg(V, S and bs being constant). ТЬе former case has already been considered, 
namely with increasing V Шt~t. ~ Ц~e) the only changeable parameter is the 
coefficient in eqn. (148) at d8 I d1 and the right-hand side remains unchanged. 
То consider the latter case bg -+ 00 (gas pressure increases), let us use eqn. 
(121) relating Vin to vоие 

Ь· S 
V· ~ + '\' '\' g vout III Ь -Ь L.., W s L.., Ys,i 

g g s L 

where 

bg,in bg(crn) = I Crn,i 

Ifthe initial reactants for an elementary reacgon are k gas mщесulеs (as 
usual k = О or 1), the reaction rate is w = ь; ш' (с g, 8), where ш' (с g, 8) is по 
longer explicitly dependent оп bg • Dividing elementary reactions into 
groups corresponding to various k values and designating the rates for the 
kth group as шм ' we obtain 

v:"sc g
) + bg I w;,s(c g

, 8) 
d'i k~l 

At bg -> 00, reactions involving the participation of the greatest number 
of gas molecules (k = kma'> Ьесоте predominant. When choosing а new time 
scale,' = ь:шах " we сап go to the quasi-steady-state approximation at s -+ О 
if the "fast" subsystem corresponding to the case in which k = kmax 
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iJ I Wk,s(c g ,8)h,s 
k=kmax 

has at апу fixed cg а unique and global stable steady state. А more сот­
prehensive analysis, taking into account possible partial quasi-stationarity, 
сап Ье made similarly to the саве for Ь, -> О (вее ref. 40 and also the example 
given below). 

If 8 -> О at constant Ь" Ьр and V(~;t р Ntot ) оп the right-hand side ofthe 
first equation of eqns. (148) there appears а large paraтeter 1/8, Generally 
speaking, both sets ofvariables (gas and surface) Ьесоте "fast" (at Vin =1- О). 

If we return to the initial equations (119), it Ьесотев clear that at 8 -> О, 
variations in cg 

are determined accurately to the terms of the order Ьу the 
substance flow 

~g ~g 

~g = VinCin _ VoutC + О(е) 
V V 

or, taking into account eqn. (123), we have 

It is also possible to consider the саве 8 -> О, with Ь" bg , and V constant and 
Vin also tends to zero with Vin/8 remaining unchanged. Then the саве 8 .... О 
does not differ from V -> 00, which was considered first, and they сап Ье 
united into опе саве 8/V .... О (Nt;t р ~~t) with bg , bs and Vin/8 being соп­
stant, 

The question arises: which of the савев is closest to reality? Let ив 
consider the physical possibilities for various paths for 8 -> О. 

(а) Ь • .... О, V, 8, and bg are constant, This corresponds to the sequence of 
systems (with different е) having the вате volume and catalyst surface areas 
at the вате pressure, but different (decreasing) density of active sites оп the 
catalyst surface, The latter is obtained with strong poisoning or dilution of 
the catalyst, 

(Ь) bg .... 00, V, 8, and bs are constant, This corresponds to the increase of 
gas pressure in the system. 

(с) 8/V -> О, bg , bs and Vin/8 are constant. This теапв that, starting from 
approximately equal values of Nt;t and ~~t, we increase the gas volume in 
the system or reduce the catalyst surface area Ьу the appropriate changes of 
Vin (Vin/ 8 = const.). Ап apparent barrier for the application ofthis asymptote 
is the fact that, generally speaking, 8! V is not Бтаll. But it is а dimensional 
value and its втаllпевв depends, for example, оп the choice of length units, 
А real meaning is obtained for the втаlIпевв е = ~~tj~;t. If, for exaтple, е 
is already sufficiently втаll to apply the quasy-steady-state approximation 
with fairly good accuracy, then the value of 8jV cannot yet Ье very втаll. 

Asymptotes at е -> О, corresponding to (а) and (Ь), are sure to have their 
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meaning with high degrees of catalytic poisoning (а) or high gas pressure (Ь). 
But their application suggests that at 8 -> О the rate ratios for various 
reactions change and воте of them practicaHy disappear (вее аЬоуе). It is 
not observed for the asymptote (с) which веетв to Ье the most natural. 

It is also possible to consider the саве 8 -> 00. It is symmetric to the аЬоуе 
савев (а)-(с) accurate to the substitution ofcg

, bg and ~~t Ьу с\ Ь, and ~~t, 
respectively. This саве corresponds to catalytic reactions carried out under 
high-vacuum conditions. For this саве one сап observe а "reverse quasi­
stationarity", i.e. а fast "adapting" of the concentrations for gaseous sub­
stances cg to those of surface substances с' . 

Let us consider аН asymptotes for а simple example of catalytic isomeriza­
tion А + Z ~ AZ -=. BZ ~ В + Z. То reduce the calculations, we assume аН 
steps to Ье irreversible. 

СА = ~ [k1CACZ( -1 + :g СА) - kзсвz :g СА] + 

+-- ---bg,inVin (CA'in СА) 
V bg,in bg 

СВ = ~[kЗСВZ(l - :g СВ) + k1cACZ :g СВ] + 

+-- ---vinbg,in (CB'in СВ) 
V bg,in b g 

CBZ k2cAZ - kзсвz 

where 

const. 

and 

Ь, = Cz + CAZ + CBZ = const. 

Using the laws of conservation and applying variables С and В, we сап 
write 

~A = ьSV[klЬgь,САВz(-l + СА) - kзЬ,ВвzсА ] + 
g 

Vin Ь cA,in - СА 
+ V g,in Ь 

g 
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(}BZ = k 2 (1 - 8z - 8BZ ) - kз 8вz 
СВ = 1 - Сл 

8 лz = 1 - 8z - 8BZ 

where СЛ,iп = Сл,iп/Ьg,iп' 
Let ив consider the саве (а): Ь• ---+ О, bg , S and V = const. Vin > О. Then 

сл(t) = Сл,iп + [СА(О) - СЛ'iп1ехр(- Vi~;'int) + 0(8) 
g 

Surface coverages 8z and 8BZ are determined accurate to 0(8) from linear 
equations with variable coefficients 

(}Z = - k1 Ьg [СЛ'iП + (сл(О) - Сл,iп) ехр ( - Vb:vin t )] 8z + 

+ kз 8вz + 0(8) 

(}BZ = k2 - k282 - (k2 + kз )8вz + 0(8) 

The rate constants and bg , ав well ав eA,in and Vin, are assumed to Ье поп­
zero and hence the matrix 

is non-singular. 
Ав сап Ье вееп, at Ь• ---+ О the asymptotes are rather simple, but по quasi­

stationarity exists, Ав shown аЬоуе, this is а rather common саве for CSTR 
when ел(О) = ел,iп and hence ел(t) = СЛ,iп + 0(8). 

If we аВВUПlе that Vin = О (the system is closed) we obtain the саве соп­
sidered previously. Note that then the asymptotes given are not applicable 
since а linear part in the equation for сл Ьесоmев singular and the major 
contribution is made Ьу the terms ofthe order 0(8). For this саве (Vin = О), the 
quasi-stationarity in the system Ьесоmев possible. Proceeding from the 
assumption that at Ь, ---+ О we will have Vin/b, = const., it is possible to go to 
а new time scale, = b,t and obtain 

dсл S [k Ь - ( -) k 8 - Vin bg,in (ёл. iп - ёл )] (h = b
g 

V 1 gСл 8z - 1 + СЛ - з BZCA + 
Ь, Vb g 

Ь d8z = k Ь - 8 k 8 
, 1 gCA Z + 3 BZ d, 

Ь, d:~z = k2 - k28z - (k2 + kз )8вz 
Since, it was assumed that vin/b, = const. at Ь, ---+ О, the right-hand side of 
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the first equation is independent of е. At апу СА ~ О the system of "fast 
motions" has а unique asymptotieally globally stable steady state: 

e
z 

= k2 kз 
k jbgcAk2 + k2 kз + kз kj Ьg СА 

е _ k j bgcA k2 
BZ -

kjbgcAkz + kz kз + kзkjЬgСА 

Consequently, starting from вomе suffieiently low Ь" the quasi-steady­
state approximation сап Ье applied after а eertain period oftime ('Ъоuпdагу 
layer") 

(150) 

Sinee all reaetions are of the вате order (first) with respeet to inter­
mediates, eqn. (150) eoineides in its form (aeeurate to а seale faetor) with 
that (see below) for the ease eorresponding asymptote (с) (SjV --> О). 

Let us now eonsider а version of the reverse quasi-stationarity: bs --> 00, 

S, V, bg , and vin being eonstant. Here а "fast" subsystem is of the form 

1 :.. 1 S -2 -
ьСА = bV[kjbgeZCA - (kjbgez + kзевz)сА ] + 

s g 

Vin bg•in (- - ) + -- СА" - СА bsvb
g 

.ln 

At suffieiently high Ь• it has а unique and asymptotieally globally stable 
steady state in the range О ~ СА ~ 1 near zero. At Ь• --> 00, this solution 
tends to zero like ljЬз • Therefore after passing the boundary layer we obtain, 
aeeurate to the terms of the order l/Ь" СА = 0(8), 8z = 0(8) + kз eBZ , 
8BZ = k 2 (1 ez - eBZ ) - kзевz + О(е). At t --> 00, we will have 
ez --> 1 + О(е), eBZ --> 0(8), е AZ --> 0(8). 

Consequently, in this ease, the surfaee is praetieally free. Let us eonsider 
the asymptotes at high (bg --> 00) and low (bg --> О) pressures. If bg --> 00, the 
equation for СА will have а small parameter l/bg but not for all summands and 
оп the right-hand side of the equation for ez there appears а large parameter 
bg • Let us write 

References рр. 183-184 



162 

8BZ = kz(1 - 8z - 8BZ ) - kз 8вz 
Ав вееп, а fast variable here must consider only 8z. At апу 8BZ and СА =Р О, 

the equation for 8z has а unique and asymptotically globally stable steady­
state solution 

8z = ~ kз~вz 
bg k 1cA 

Quasi-steady-state equations are of the form 

О(е) .. 
С А О(е) 

8Bz = О(е) + k z - (kz + kз ) 8BZ 

Their physical meaning is ав follows. At high gas pressures the surface 
contains almost по unoccupied sites since they are rapidly occupied Ьу 
adsorbing molecules of А. А value of ~A is а low since the quantity of gas is 
very high compared with that of the catalyst and the adsorption rate is low, 
hence 8z is low. 

If bg ---> О (low pressures) we сап write 

8z = bg k1cA 8z + kз 8вz 

8BZ = k z(l - 8z - 8BZ ) - kз 8вz 
А fast variable here is СА' At fixed 8z and 8BZ , it is necessary to examine а 
system of fast motions. This has the steady states 

(-) _ 1 kз 8BZ uin bg,in 1 
СА 1, Z - 2" + 2Ъ k 8 + 28 -ъ- k Ъ 8 ± 

g 1 Z g 1, Z 

[ 
z - J1/2 

+ ~ (1 + ~ 8BZ + иin bg'in~) _ и8in bbg'gin kCIAb',in8z 
- 4 bg k 1 8z 8 bg k 1 Ъ, _ 

А root (СА)1 corresponding to а negative sign, always lies оп the segment [О, 
1] whereas that of (СА)2 is always above unity. Непсе оп the segment [О, 1] 
there exists а unique steady state for the fast subsystem. Since the segment 
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[0,1] is w-invariant (if, at the initial instant, О :::; СА :::; 1, then this inequality 
is also valid for the rest of the period) this steady state is stable and the 
Тikhonov theorem сап Ье used. А solution of the quasi-steady-state equa­
tions is of the form 

- - ( Vinbg.in ) О(Ь) 
СА = CA.in k {} Ь S . Ь. + g 

3 BZ s + VШ g,ln 

and {}Z and {}BZ сап Ье found from the equations 

and 

(}BZ = k 2(1 - (}z - (}BZ) - kЗ{}ВZ 

These equations are linear and сап Ье easily integrated. Their characteristic 
values ате А1 = k 2 and А2 = - kз and the corresponding eigenvectors will Ье 

Непсе а general solution is 

[::J = O(bg ) + [~] + с1 [::]ехр (- k 2t) + С2 [: ~]exP(- kзt) 
where С1 and С2 are arbitrary constants. 

Finally, let ив consider the саве S/V --> о, Ь., bg and Vin/S being constant. 
After going to а new time scale т = (S/V)t, we obtain 

Equations of "fast motions" ате linear and have а unique steady-state 
solution 

{} _ k 1 bgcA k2 
BZ -

k! bgcAkz + k2 kз + kзk! bgCA 

which is stable. 
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At в = В/ V -> О, the Tikhonov theorem is applicable, hence starting from 
sufficiently small в, we сап иве the quasi-steady-state approximation. 

Of great importance is the fact that the quasi-steady-state approximation 
is the solution asymptote of the initial system at в -> О, but it is applied at 
finite в. То establish а starting value from which this approximation сап Ье 
used with the prescribed accuracy is а rather difficult problem in each 
particular саве. 

In the intriguingly entitled publication "The steady-state approximation, 
fact or fiction?" Ьу Farrow and Edelson [41] presents calculated data оп the 
unsteady-state behaviour of а complex chemical reaction including 81 steps. 
The reaction mixture consists of 50 substances. Numerical calculation 
shows а great variety of unsteady-state characteristics of а complex reac­
tion. This variety cannot Ье interpreted in the narrow framework of the 
quasi-steady-state hypothesis. Nevertheless, the authors discriminate bet­
ween the ranges of parameters and time intervals within which this hypothe­
sis is confirmed Ьу numerical experiments. 

The initial system сап Ье constructed ав а series with respect to powers 
of в [39]. А zero approximation here is а solution of the degenerated system. 
This approach is, however, very rarely used since the increase of accuracy 
results in а significant complication of calculations. 

In conclusion, it must Ье noted that the equations to describe the tran­
sient behaviour of heterogeneous catalytic reactions, usually have а small 
parameterB = N,~t/N,~t.HereN,~t = Ь,В = thenumberofactivesites(mole) 
in the system and Nt~t = bg V = gas quantity (mole). Of most importance is 
the solution asymptotes for kinetic equations at N,~t/N,~t -> О, Ьо , bg and Vin/S 
being constant. Here we deal with the parameter В/ V which is 'I'eadily 
controlled in experiments. The саве is different for the majority of the 
asymptotes examined. The parameters with respect to which we examine the 
asymptotes are difficult for control. For example, we cannot, even in princi­
ple, provide an infinite increase (or decrease) of such а parameter ав the 
density of active sites, Ь,. Moreover, this parameter cannot Ье varied essenti­
аНу without radical changes in the physico-chemical properties of the cat­
alyst. Quasi-stationarity сап Ье claimed when these parameters lie in а 
definite range which does not depend оп the experimental conditions. 

То answer the question whether quasi-stationarity сап Ье observed in our 
kinetic model at в -> О it is first necessary to examine а subsystem of fast 
motions Са fast subsystem") воав to establish if it has а unique and stable 
steady-state solution. 

5. Uniqueness, multiplicity and stability of steady states 

For heterogeneous catalytic reactions а "fast subsystem" must, ав а rule, 
correspond to the conversions of surface substances. Let these substances Ье 
Zj, ... , ZN. А mechanism for surface conversions is of the form 
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р = 1, .. . ,N 

This mechanism is obtained after eliminating gas-phase substances from the 
globalone. 

Under the assumption of the law of acting surfaces we obtain 

ш/г) = ш; (г) - ш;; (z) = k; fI Z~i - k;; fI ;}fi 
i=l i=l 

Here аН concentrations of gaseous substances are suggested to Ье constant 
and are included ав co-factors into the rate constants ki. 

Kinetic equations take the form 

n 

Z = I Ypwp(z) (151) 
р=l 

where the vector Ур has the coordinates (Yp)i = {Jpi - iXpi' These equations 
resemble eqns. (18) and (19) describing chemical conversions in closed вув­
tems at а constant volume. But there is an essential difference. It is possible 
that по PDE exist for eqn. (151). А steady-state point for eqn. (151) is not an 
obligatory PDE. Such coincidence is an exception rather than а rule. 

For eqn. (151) at least one positive law of conservation exists correspond­
ing to the constancy ofthe total amount (or concentration) of catalyst in the 
system. In the simplest саве, this law is expressed ав Ь, = LiZi = const. 
(where Zi is the concentration of Zi)' 

Further discussion will Ье devoted largely to the investigation of the 
properties for the kinetic models of surface conversions and primarily to the 
analysis of the number and stability of solutions for eqn. (151). 

For this analysis it is of importance to classify mechanisms (their авво­
ciated kinetic models here are the sets of quasi-steady-state equations) to 
answer the question of what class of mechanisms роввеввев а unique and 
stable solution for the quasi-steady-state equations, and which one сап Ьауе 
several solutions, i.e. several steady states. 

5.1 LINEAR MECHANISMS 

The simplest class of catalytic reaction mechanisms are linear опев. This 
term was introduced Ьу Temkin (вее СЬар. 2). Linear mechanisms are those 
that contain only elementary Zi .,z Zгtуре steps. Непсе every reaction invol­
уев the participation of only опе molecule of the intermediate substance. 

ТЬе theory of linear mechanisms is а sufficiently developed field of cat­
alytic kinetics. Letus present its principal results. In accordance with the 
law of acting surfaces, kinetic equations for а linear mechanism are of the 
form 

Z Kz (152) 

where К is the square matrix whose diagonal elements are non-positive and 

References рр. 183-184 



166 

off-diagonal elements are non-negative. Ву virtue of the existence of the 
linear law of conservation ~iZi = const., the sums of elements in every 
column of the matrix К are equal to zero. The matrix itself is of the form 
К = (kioj ) where the kij is the rate constant of reactions Zj ..... ZJi f= j) and 

k ij = - I k u if i = j 
l=i 

The dynamics for eqn. (152) is determined Ьу the eigenvalues of the matrix 
К. It сап readily Ье tested that if at the initial instant t = О аН Zi ;:;;, О then, 
according to eqn. (152), we also have Zi ;:;;, О at t > О (it is а special case of 
the general statements concerning ш-iпvагiапсе ofthe orthant for non-nega­
tive vectors relative to chemical kinetic equations; see, for exaтple, ref. 7). 
Therefore for eqn. (152) there exist ш-iпvагiапt simplexes of the type Zi ;:;;, о, 

~iZi = const. > о. In accordance with the existence of these simplices, it is 
not difficult to obtain the foHowing properties for the eigenvalues of the 
matrix К: 

(1) real parts of the К eigenvalues are non-positive; 
(2) К has по purely imaginary eigenvalues. 
Proof is based оп simple geometrical considerations. For example, let us 

prove property (2). Assume the opposite, then the hyperplane ~Zi = const. 
contains а two-dimensional plane where the К action reduces to а rotation 
around а fixed non-negative point. The intersection of this plane with the 
ш-iпvагiапt simplex is а ш-iпvагiапt polyhedron that must transform into 
itself when rotating Ьу ап arbitrary angle, which is impossible. 

Properties (1) and (2) also result from the estimates of the eigenvalues 
using Gershgorin circles [29]: апу eigenvalue А of the matrix К lie оп а 
complex plane in опе of the circles of type I А - kii I :( I kii I or otherwise 

I А + I kji I :( I kij (153) 
j,!i j,!i 

Let ив recall that kji is the rate constant of reaction Zi ..... Zj. The number of 
such Gershgorin circles is the вате ав the number of substances. The above 
estimates (153) do not permit us to judge the fold of а zero eigenvalue, since 
every circle contains о. Matrix К always has а zero eigenvalue with а 
non-negative eigenvector. It results, for example, from the existance of ш­
invariant simplexes. Each such simplex for eqn. (152) has а fixed point z о: 
z = Kzo = б; Zo is ап eigenvector corresponding to а zero eigenvalue. If 
each ofthe simplices Zi ;:;;, о, ~Zi = const. > О contains а unique fixed point, 
then the characteristic subspace corresponding to а zero eigenvalue is 
one-dimensional (itis only slightly less evident than it seems at а first glance 
and accurately substantiating this statement, а reader сап check his know­
ledge oflinear algebra). In the opposite саве there exists ап additionallinear 
law of conservation, and every simplex decomposes into ш-iпvагiапt balance 
polyhedra of lower dimension. 

Let us establish conditions for the existence of additional linear laws of 
conservation. Consider опе invariant plane Р; ~iZi = const. > о. Let there 
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exist ап additionallinear law of conservation L(z) = const. ЕасЬ equation 
L(z) = С accounts for а hyperplane in Р. With two values С = Сl , С2 this 
hyperplane is а reference surface for а w-invariant simplex in Р (it is deter­
mined in Р Ьу the inequalities Zi ;:" О). Intersections of the hyperplanes 
Цг) = Сl , С2 with this simplex will Ье [асев designated ав 81' 82' In par­
ticular, 81 and 82 сап consist of опе vertex. ТЬеу correspond to the sets of 
substances whose concentrations оп 81 and 82 сап Ье zero. ТЬеве sets are 
different, i.e. 81 and 82 do not intersect. Faces 81 and 82 are invariant [а law 
of conservation is L(z) = С], therefore corresponding substances cannot 
transform into апу others whose concentrations оп 81 (or 82) equal zero. 
ТЬив, in а linear system, additionallaws of conservation сап exist only in 
the саве where there are at least two groups of substances with the following 
properties: (1) the groups Ьауе по соттоп substances; (2) substances in еасЬ 
of these groups cannot transform into апу others not entering into their 
group. But inside these groups substances сап undergo mutual transforma­
tions. ВисЬ groups of substances сап Ье called autonomous. ТЬе simplest 
example of such cases is provided Ьу the всЬете of two parallel reactions: 
А ~ В, А ~ С. Here two autonomous groups form substances В and С. Ап 
additionallinear law of conservation is ofthe form (В/kl ) - (C/k2 ) = const. 
But for the reaction А ---+ В ---+ С а similar law is absent. 

ТЬе presence (or аЬвепсе) of autonomous groups of substances is easily 
checked. W е assume they are absent. Ав usual, а more rigorous condition 
compared with the аЬвепсе of two autonomous groups is fulfilled. It is the 
condition of ап orientally connected reaction graph. (Here we speak about 
graphs of linear mechanisms when nodes are substances and edges are 
elementary reactions.) 
А graph is called orientally connected (connected digraph) if from апу 

node we сап get to апу other along its edges moving in the direction of the 
arrows. Oriented connectivity is closely associated with weak reversibility 
(вее Sect. 5.3) but does not coincide with it. 

Let ив examine the properties of eqn. (152) under the assumption of 
oriented connectivity. Let ив fix воте w-invariant simplex п о : Zi ;:" О, 
L;Zi = С > О. п о Ьав а unique steady state гО. Vector гО is positive since, 
due to the connectivity of the reaction digraph, по steady-state points exist 
оп the boundary D О' Indeed, if we аввите the opposite (воте components гО 
are zero), we obtain kji for висЬ i and j ав Z? =1 О and z'j = О. But from this 
it follows that, moving along the direction of arrows in the graph of the 
reaction mechanism, we cannot get from the substances for which Z? =1 О to 
those for which z'j= О, and this is contrary to oriented connectivity (the 
arrows in the reaction graph correspond, naturally, to the elementary reac­
tions with non-zero rate constants). 

Ав for closed systems, 15 О Ьав а function monotonically decreasing along 
the solutions of eqn. (152) 

z?1 (154) 
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Index L is given to GL to distinguish it from the Lyapunov function for closed 
systems. Strictly speaking, it is not the Lyapunov function, since it cannot 
Ье differentiated оп the hyperplanes prescribed Ьу the equations Zi = Z't. 

Therefore, instead of estimating its derivative Ьу virtue of eqn. (152), let us 
determine its decrease for а finite period of time т. Actually, we will find an 
ergodicity coefficient [42] for the matrix ехр тК 

GL(z(t + т), го) ~ GL(z(t), го) 1 - [(kT)m ехр ~ - (k + q)T)] (155) 
nm. 

where q is the maximum for the вит of the rate constants for elementary 
reactions wherein only one of the substances is consumed (the maximum is 
taken with respect to substances), т is the тахiшит length of the shortest 
direct path binding pairs of substances in the reaction graph (for each pair 
of substances А1 and А2 the shortest path from А1 to А2 is chosen and the pair 
for which this path is the longest is found; pairs of А1 and А2 and of А2 and 
А1 аге thought to Ье different, since а directed path from the first to the 
second component of the pair is searched for), and k is the lowest non-zero 
rate constant. 

Estimate (155) сап Ье quite easily improved, but for us its existence is of 
itself important. Let ив denote 

А = 1 _ (kT)m ехр [- (k + q)T] 
, nm! (156) 

It is evident that GL(z(t + [т), го) ~ GL(z(t), гO)A~. 
It is essential that the estimate of the type (155) takes place and for the 

convergence of various trajectories having different г(О) but lying in the 
same Do("Lz;(O) is the same) 

(157) 

For linear systems with variable rate constants*, the estimate (155) becomes 
meaningless since, although it is possible that а fixed point is absent, eqn. 
(157) preserves their validity and аН trajectories аге converging. The only 
difference, compared with autonomous systems, is that instead of q and k in 
eqn. (156) their иррег and lower, respectively, time limits must Ье taken. It 
is natural that sup q < 00 and inf k > О must Ье fulfilled. 

Chapter 4 presents several new results for linear mechanisms. Неге we 
will give а short statement of the fact that а set of quasi-steady-state equa­
tions corresponding to а linear mechanism is that of linear algebraic equa­
tions. This set has а unique solution and therefore the steady state of the 
system in which а given reaction takes place following а linear mechanism 
(at given balances) is unique and stable. 

* Let the reader excuse us for such а word·combination "variable 'constant", but we have to use 
it. 
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For 1inear sets of differentia1 equations having an m-invariant 1imited 
po1yhedron, an eigenva1ue for the matrix ofthe right-hand side сап Ье either 
zero or have а negative rea1 part, i.e. after e1iminating 1inear 1aws of conser­
vation, а steady-state point of these systems becomes asymptotically stable. 

If the reaction graph is orientally connected, the phase врасе of а linear 
system (а ba1ance po1yhedron) has а metric (154) in which аН trajectories of 
the system monotonicaHy converge and the distance between them tends to 
zero at t ...... 00. This ho1ds true for both constant and variable coefficients 
(rate constants), if in the 1atter case it is demanded that аН rate constants 
have upper and positive lower 1imits (О < о: < k(t) < f3 < 00,0:, f3 = const). 

What reactions have 1inear mechanisms? Primari1y these are enzyme 
reactions [43, 44]. А typica1 scheme for enzyme cata1ysis is the Michae1is­
Menten mechanism: (1) Е + А ...... ES; (2) ES ...... Р + S, where S and Р are 
the initia1 substrate and product, respective1y, and Е and ES are various 
forms of enzymes. 

5.2 MECHANISMS WITHOUT INTERMEDIATE INTERACTIONS 

Linear mechanisms are rather common for heterogeneous cata1ytic reac­
tions. Examp1es are given and examined Ьу Cornish-Bowden [43] and Ker­
nevez [44]. Non-1inear mechanisms, i.e. those including interactions of 
severa1 molecu1es of the вате or different surface substances, however, are 
more frequent. For example, а widely spread step of dissociative adsorption 
is non-linear. 

For us it is important to distinguish between the c1asses of mechanisms 
possessing uniqueness of steady state at any va1ue of the reaction paramet­
ers. It will Ье shown that опе of these classes is that of mechanisms having 
по steps consisting of interaction between intermediates. АН steps of these 
mechanisms are ofthe type пА ...... т В, i.e. there is one substance оп both the 
right and оп the 1eft sides. ТЬе difference of these mechanisms from 1inear 
mechanisms is that stoichiometric coefficients сап Ье greater than unity. 
This difference is, however, not very essential since it does not affect the 
form of metric (154) where trajectories converge. То illustrate this, let the 
unique linear law of conservation Ье of the form ~Zi = const. and the graph 
of а linear mechanism obtained from the reaction mechanism involving по 
intermediate interactions Ьу substituting аН stoichiometric coefficients Ьу 1 
is orientally connected (or, which is the вате, its bipartite digraph is con­
nected). ТЬе kinetic equations wiH Ье 

Zi = - I dkiJdzf + I dkJidzf (158) 
J.i J.d 

where kijd are the rate constants for the reaction d Zi -> d Zj. ТЬе Jacobian 
matrix for eqn. (158) will Ье written as 

(159) 
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Note that matrix (159) coincides with that of the kinetic constants for the 
linear mechanism whose rate constant for the reaction Ai --> Aj is 

- "2 _11-1 qij(Z) = L... d kijdZi 
d 

ЕасЬ internal point z of the balance polyhedron Ьав а set of constants qij 
corresponding to the orientally connected graph of the mechanism. Steady­
state points (and, тоге extensively, positive semi-trajectories) оп the bal­
ance polyhedron boundary аге abse.nt since it would contradict the oriented 
connectivity ofthe graph for the initial mechanism (а reader сап prove this 
ав an exercise). Therefore for any, > О there exist висЬ д > О that, for any 
solution of eqn. (158) lying in а given balance polyhedron at t = О, we obtain 
Zi(t) > д at t > , and аН values of i. Let ив consider two solutions for eqn. 
(158), z{l)(t) and г(2)и), lying in the вате balance polyhedron ПО. 

At every point of ПО the Jacobian matrix is that of kinetic constants for 
а certain linear mechanism (whose exponent is stochastic). Hence at t > О 
we have GL [Z(l)(t), z(2)(t)] ~ GL [Z(l)(O), z (2) (О)] in accordance with the orient­
ed connectivity of the graph for the initial mechanism and the fact that, 
starting from an arbitrary, > О (at t > с), the inequalities О < rx < Qij[Z(t)] 
< f3 [2(0) Е по ] аге fulfilled. ТЬе latter inequalities Ьауе certain rx and f3 
independent ofz(O) and determined only Ьу" ПО and а set of constants ofthe 
initial mechanism. In this саве 

GL [Z(l)(t), Z(2)(t)] --> О when t --> 00. 

When the principal linear law of conservation is of the form 
LЩZi = const., elementary reactions entering into the mechanism without 
interactions аге (d/щ)Аi --> (d/mj)Aj and the corresponding kinetic equa­
tions and Jacobian matrix will Ье 

Zi = - I (d/m;)kijdZf/mi + I (d/mj)kjidZf/mj 
hd hd 

(160) 

Matrix J роввеввев the properties 
(1) its non-diagonal elements аге non-negative and 
(2) the вит of elements of аnу column with the coefficients Щ is equal to 

zero 

Ав in the previous paragraph where we considered the саве m. == 1, we 
obtain (1) eigenvalues of J have anon-positive real part and (2) purely 
imaginary eigenvalues are absent. Further, for anytwo solutions у{l) and 
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у(2), the equations у = J(t)y, where the matrix J(t) satisfies conditions (1) 
and (2) at апу t, the value of ~i~ 1 m i I y~!) - у )2) I does not increase. But if the 
condition of oriented connectivity is fulfilled (uniformly with respect to t), 
for апу pair of indices i, j (i =1= j) there will exist such а set of the indices k1 , 

... , km , ав Jik,(t), Jk,k2 (t), ... , Jk".j(t) > а > О (а = const.) at аН t. [It should 
Ье noted that the set k1 , ••• , k m сап also Ье assumed to Ье empty if 
Jij(t) > а > О.] Then for апу two solutions уЩЩ and y(2)(t) with the вате 
value for the law of conservation, Lmiy)l) = Lщу~2), we will obtain the dis­
tance ~i~lЩ bl1)(t) - y~2)(t) I --+ О at t --+ CfJ. 

Ав in the саве Щ = 1, in accordance with the аЬоуе properties of Jaco­
bian matrix (160), it follows that, under the assumption of the oriented 
connectivity for the reaction mechanism involving по intermediate interac­
tions, the time shift is the phase врасе (or balance polyhedron) compression 
in the metric 

n 

I щ I г~!) - г~2) I (161) 
i=l 

Апу two solutions lying in the вате balance polyhedron converge in the 
metric (161) and p(z(l)(t), Z(2) (t» --+ О at t --+ CfJ. It results, in particular, in the 
existence, uniqueness and asymptotic stability (in the large) of the steady 
state in the balance polyhedron. This was confirmed Ьу Vol'pert et al. [45] 
and partly and simu1taneously Ьу Bykov et al. [46-48]. (Note that аН the 
considerations given also hold for the пА --+ ~ЩВi- type reaction systems.) 

Let ив consider а structure for the multitude of steady states for eqns. 
(158) or (160) in the positive orthant. For linear systems i = Kz it forms 
either а ray (in the саве of the unique linear law of conservation) emerging 
from zero, or а сопе formed at the linear виЬврасе ker К intersection with 
the orthant. The structure for the multitude of steady states for the systems 
involving по intermediate interactions is also rather simple. Let ив consider 
the саве of only опе linear law of conservation Lmizi = с = const. and 
examine the dependence of steady-state values zit оп с. Using eqn. (160), we 
obtain 

J(zst) dz't 
dc 

dz7 t 

ImiТc = 1 

О 

(162) 

Let ив аввите the connectivity of the reaction mechanism digraph. It then 
follows from eqn. (162) that 

dz~t 
-' > о 
dc 

(163) 

Consequently, zit monotonically depends оп the balance с = Lmizi. Соп­
dition (163) сап Ье rewritten ав 
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dZt 

-' > о 
dZk 

(163') 

where Zk is воте chosen concentration (degree of coverage). The absence of 
interaction steps, e.g. of the type 

(164) 

is а sufficient (under oriented connectivity) but not а necessary condition for 
the validity of eqn. (163). InеquаЩiеs (163) сап also Ье fulfilled for воте 
mechanisms involving interaction steps. They сап Ье applied to prove uni­
queness of а positive steady state. For this purpose, in addition to eqn. (163) 
it is necessary to prove that а positive steady state is unique for at least one 
value of с. Ав usual, it is simpler to show for с values that are close to zero. 
In воте савев it is possible to find explicit expressions for zit(Zk) functions. 
Ifthis function is unambiguous, the fulfilment of conditions (163) is sufficient 
for а positive steady state to Ье unique. Moreover, in this саве it витсев that 
~midz/dzk > О. 

Let ив give an example. 
Example 7. Hydrogen oxidation оп platinum. In accordance with the 

range of parametric variations, this reaction сап follow two different те­
chanisms [49]. 

or 

(1) 02 + 2Z -+ 2Z0 

(2) Н2 + 2Z <=± 2ZH 

(3) ZO + ZH -+ ZOH + Z 

(4) Н2 + 2Z0H -+ 2Z + 2Н2 О 

(5) Н2 + ZO -+ Z + Н2 О 

(1) 02 + 2Z -+ 2Z0 

(2) Н2 + 2Z <=± 2ZH 

(3) ZO + ZH -+ ZOH + Z 

(4) ZH + ZOH -+ 2Z + Н2О 

(5) Н2 + ZO -+ Z + Н2 О 

(А) 

(В) 

Designating the concentrations of Z, ZO, ZH, and ZOH Ьу Zj, Z2' ZЗ, and 
Z4 and assuming that the concentrations of substances in the gas phase of 02 
and Н2 enter ав co-factors into the rate constants of the appropriate reac­
tions, we сап write а kinetic model for mechanism (А) ав 
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Z4 kзZzZз - 2k4Z~ 

where Zl + Zz + Zз + Z4 = const. Here steady-state concentrations Zi are 
expressed Ьу the equations (zz = zз = Z4 = О) 

[Zz(kзZЗ + k 5 )]1/2 
2k1 

2k1 k_ 2 Zз 

(kз z2 zз)1/2 
2k4 

In this саве по boundary steady states exist, hence we will have only positive 
solutionsandkzk5 + kз(kz - k1)zз > О. Underthisconditionitcaneasilybe 
shown that dZ1/dZз , dzz/dzз , and dz4 /dzз are positive, i.e. the internal steady 
state is unique. In this саве condition (163') is fulfilled and despite the 
mechanism involving an interaction step between various intermediates, the 
kinetic model has only one positive steady-state solution. 

Mechanism (В) corresponds to the kinetic model 

where, ав before, Zl + Zz + Zз + Z4 = const. Steady-state values for its 
variables сап Ье written from the equations Zz = zз = Z4 = О 

[ 
z k_z(b + сzз)z;J 1/Z 

Zl = аk4zз + --".::...с., __ --"'с....:: 
kz(b + СZЗ ) 

k4 [аZз/(Ь + СZЗ )] Zz 
kз 

Z4 = 
az; 

Ь + СZз 

where а = 2k1k_ z, Ь = k2 /kз k4 k5 , and с = kzk4 - 2k1k4. For the саве in 
which, along with the boundary steady state (Zl = Z2 = Zз = О, Z4 = const.), 
а positive steady state also exists, it is necessary that Ь + СZз > О. Under 
this condition dZ1/dZз , dZz/dZз , and dz4 /dzз are positive. Hence though 
mechanism (В) involves an interaction step between various intermediates, 
it сап have only an unique internal steady state. 
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For mechanisms having interaction steps between various intermediates 
(Zi + Zj -> ), it is also possible that the condition of а monotony (163') is not 
fulfilled. (Fulfilment of this condition сап Ье thought to Ье ап exception 
rather than а rule.) Simple mechanisms of this type tolerating the existence 
of several steady states wiIl Ье examined comprehensively in Chap. 5. 

Let us emphasize the most essential conclusion that сап Ье drawn in this 
section: а sufficient condition for the uniqueness of steady states in catalytic 
reactions is the absence ofinteraction steps for various intermediates in the 
detailed reaction mechanisms. Their presence is а necessary condition for 
the multiplicity of steady-state values for the catalytic reaction rates. This 
principal statement possesses ап -evident discrimination property. If some 
experiment is characterized Ьу the multiplicity of steady states and its 
interpretation suggests а law of acting surfaces, the description of this 
experiment implies а detailed mechanism that must contain interaction 
steps of various intermediates. 

5.3 QUASI-THERMODYNAMIC HORN AND JACKSON SYSTEMS 

Studies of linear systems and systems without "intermediate interac­
tions" show that а positive steady state is unique and stable not only in the 
"thermodynamic" case (closed systems). Horn arid Jackson [50] suggested 
опе more class of chemical kinetic equations possessing "quasi-ther­
modynamic" properties, implying that а positive steady state is unique and 
stable in а reaction polyhedron and there exist а global (throughout а given 
polyhedron) Lyapunov function. This class contains equations for closed 
systems, linear mechanisms, and intersects with а class of equations for "по 
intermediate interactions" reactions, but does not exhaust it. Let ив describe 
the Ноrn and Jackson approach. 

Let the reaction mechanism Ье prescribed in the form 

(165) 

А combination of symbols А; with non-negative integer coefficients in the 
right- and left-hand sides of the stoichiometric equations for reaction steps 
wiIl Ье called complexes. Designating each complex Ьу опе letter у, the 
reaction mechanism сап Ье represented ав 

(166) 

for certain pairs Yk' yj. А list of reactions (166) сап also Ье represented ав а 
graph. For example, for the oxidation of СО оп Pt following the Eley-Rideal 
(impact) mechanism we сап write (considering only intermediates and omit­
ting the symbols for the gas-phase components) 

[2 Z] <=± [2 ZO] 

[ZO] -> [Z] (у! <=± У2) 
уз -> У4 

For the Langmuir-Hinshelwood (adsorption) mechanism we will have 



[ZO + ZCO] -> [2 Z] <=± [2 ZO] 

[ZO] -> [Z] <=± [ZCO] 
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For each pair of Yj and Yk complexes, Wjk represents the rate of reactions 
Yj -> Yk (and Wkj is similarly the rate OfYk -> Yj or, which is the вате, Yj <- Yk)' 

А new variable is then introduced which is the rate of "concentration" 
variation for а given complex. It is determined ав the difference oftwo витв. 
Rates of аН the reactions to "form" this complex are added and from the вит 
obtained we will subtract that ofthe-rates for аН the reactions to "сопвите" 
this complex 

(167) 

We иве quotations for the words complex "concentration", "form", and 
"сопвите" since they have по direct physical meaning. The иве, Ьу analogy 
with the Horn-Jackson concept of а "complex" could Ье attempted of а term 
"activated complex" from the theory of absolute rates, but after воте вреси­
lation we decided that this analogy would not Ье very reasonable. Values of 
gj сап Ье interpreted if they are associated with the rates of concentration 
variations for reactants, namely Ьу giving а designation rY.ij to the coefficient 
that the ith substance has when it enters the jth complex. W е then obtain 

С; = L gjrY.ij 
j 

(168) 

[w е examine conve~sions only of surface compounds or the reaction at а 
constant volume; in other савев the analog (168) cannot Ье written either 
(вее Sect. 1).] 

Such а composition ofthe mixture for which allgj = О, i.e. the rate of each 
complex "formation" is equal to that of its "consumption", is called а point 
of complex balance (рсв). 

The first of the principal Horn and Jackson results is as follows. If the 
system obeys the law of mass action (or acting surfaces), then if it has а 
positive рсв it demonstrates а "quasi-thermodynamic" behaviour, i.e. its 
positive steady state is unique and stable and а global Lyapunov function 
exists. 

It is evident that each PDE (Wkj = Wjk) is рсв. The opposite is incorrect. 
For example, though апу steady-state point ofthe linear mechanism is а рев 
(complexes are substances, Zi = yJ, the principle of detailed equilibrium for 
it is not always valid (if the system is ореп). 
А second result consists in the determination of the class of mechanisms 

which always have а positive рсв. For its description, let us consider а 
graph of complex conversions. It nodes are у; and its edges connect those Yj 

and Yk for which а list of steps has either Yj -> У k or У k -> Yj :reactions. In case 
both reactions take place (Yj <=± Yk)' the two arrows indicate different reac­
tion directions. А graph is called connected if from апу of its nodes we сап 
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get into any other Ьу moving a10ng its edges (the orientation of edges does 
not matter since we сап тоуе in both the forward and backward direction). 
If the graph is unconnected it breaks into severa1 connected fragments 
(components). Let us denote the number of comp1exes ав М, that of connect­
ed graph components for their conversions ав l and the number of 1inear1y 
independent reactions (their stoichiometric vectors) ав S. А first Horn and 
Jackson condition for quasi-thermodynamic behaviour is 

м - 1 = S (169) 

The number of comp1exes minus that of connected components of the 
graph for their conversions equa1s the number of linear1y independent 
reactions (stoichiometric vectors). А second Horn and Jackson condition for 
quasi-thermodynamic behaviour is the weak reversibility of the graph for 
comp1ex conversions. This graph is called weak1y reversible if аnу of its 
connected components contain а route to get from any node to any other 
moving in the direction of its arrows. For examp1e, the scheme 

У1 ~Y2 

'\/ (170) 

Уз 

does not веет to Ье weak1y reversible since it is impossible to get from Уз to 
Yl and У2 and from У2 to Yl moving in the direction of the arrows. 

Horn and Jackson [50], М. Feinberg [51], Horn [52] and Feinberg and Horn 
[53] showed that if the scheme of comp1ex conversions is weak1y reversible 
and (most essentia1) the conditions (169) is fu1filled, the system a1ways has 
а РСВ and hence demonstrates "quasi-thermodynamic" behaviour. The 
weak reversibi1ity condition веетв to Ье 1ess essentia1 since, for its fu1fil­
ment, it is sufficient to suggest that аН steps are reversible assuming, if 
necessary, the rate constant for а reversible step to Ье sufficient1y low. Hence 
the main difficu1ty for the app1ication of the results of Horn, Jackson and 
Feinberg to а concrete reaction system сап Ье the impossibility of fulfilling 
eqn. (169), which cannot Ье overcome Ьу втаН additions to the equations. 

Let us check these conditions for the oxidation of СО оп Pt. The E1ey­
Ridea1 (impact) mechanism has four comp1exes, М = 4, two connected сот­
ponents [2 Z] <=! [2 ZO], [ZO] ~ [Z], and two stoichiometric vectors 

[ -:], [ _ ~] and they are 1inear1y dependent (proportiona1), i.e. S = 1, 

М - 1 = 4 - 2 = 2 > 1. In addition, for this mechanism the condition of 
weak reversibi1ity is not fu1filled. But the mechanism does not invo1ve 
interaction steps of various intermediates. Hence, though two Horn and 
Jackson conditions are not fu1filled, а steady state is unique and stable. 
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For the Langmuir-Hinshelwood mechanism, М = 6, l = 2, S = 2, and 
eqn. (169) is not fulfilled. It is also impossible to fulfil the condition of weak 
reversibility. 

An interesting example for which eqn. (169) is valid, but the mechanism 
has an interaction step of various intermediates, is ethylene hydrogenation 
оп nickel, i.e. the Twigg mechanism [54] 

(171) 

In this саве, М = 3, l = 1, and S = 3 but among the stoichiometric 
vectors only two are linearly independent. Thus 3 - 1 = 2 and the first 
Horn and Jackson condition is fulfilled. Also fulfilled is the second con­
dition, i.e. weak reversibility of the graph for complex conversions. Since 
both conditions are fulfilled, а steady state is unique and stable despite the 
mechanism having two interaction steps for various intermediates. 

Hence, in addition to the systems without intermediate interactions, the 
conditions for the existence of а РСВ account for one more class of mechan­
isms that always have an unique and stable steady state. In conclusion, let 
ив emphasize that, оп the basis of the Rozonoer approach [55, 56], Orlov has 
recently extended the Horn and Jackson results to the non-ideal systems of 
а rather general type having а РСВ [57, 58]. 

5.4 CRITERION FOR UNIQUENESS AND MULТIPLICITY ASSOCIATED WITH ТНЕ 
MECHANISM STRUCTURE 

There is по doubt that studies for the establishment of new classes of 
mechanisms possessing an unique and stable steady state are essential and 
promising. Оп the other hand, it is of interest to construct а criterion for 
uniqueness and multiplicity that would permit ив to analyze any reaction 
mechanism. An important contribution here has been made Ьу Ivanova [5]. 
Using the Clark approach [59], she has formulated sufficiently general con­
ditions for the uniqueness of steady states in а balance polyhedron in terms 
of the graph theory. In accordance with ref. 5 we will present а brief вит­
mary of these results. Ав before, we proceed from the validity of the law of 
тавв action and its analog, the law of acting surfaces. Let ив also аввите 
that а linear law of conservation is unique (the law of conservation of the 
amount of catalyst). 

In accordance with ref. 5, а complex reaction is described Ьу а so-called 
bipartite graph ofits mechanisms having vertices (points) oftwo types. Туре 
Z corresponds to substances Zi and type R is ascribed to the reaction 
Rp(i = 1,2, ... , n; р = 1, ... , N). Edges (Rp , Zi) and (Zi' Rp) have weights 
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{3;р and а;р, respectively. Ifthe weight equals zero, this edge is absent. Initial 
information and simple examples ofbipartite graphs have been given above 
(see Sect. 1.3). 

Ivanova [5] specifies the following graph elements: а segment [Z;, Rp ]; а 

positive path [Z;, Rp , Zj]+ formed Ьу two edges (Z;, Rp ) and (Rp , Zj) oriented 
in the same direction from Z; to Zj; а negative path [Zi, Rp , Zj]- formed Ьу two 
edges (Z;, Rp ) and (Zj, Rp ) oriented from Zi and Zj to Rp • The positive path 
corresponds to the formation of Zj from Z; due to the reaction Rp , whereas the 
negative one accounts for the interaction between Z; and Zj in the reaction 
Rp • The paths [Z;, Rp , Zj]- and [Zj, Rp , ZJ- are considered to Ье different since 
their orientations are from Zi to Zj and from Zj to Z;, respectively. 

In Sect. 1.3 we described cycles of two types, oriented and non-oriented. 
The oriented cycle сап Ье passed Ьу ifwe move in the direction ofthe arrows. 
For а cycle of а general type it сап Ье different since it is а sequence of the 
vertices ZI, ... , Zk where the pairs ofvertices Z; and Zi+1 (i = 1, ... , k -1) and 
also of Zk and ZI are connected Ьу edges. As usual, we wi11 consider simple 
cycles with по edge and по Z vertex appearing twice. 

То study the problem concerning the uniqueness and multiplicity of 
steady states it is necessary to consider one more type of cycle that is more 
general compared with oriented cycles. We wi11 саН them Clark (or Clark­
Ivanova) cycles. 
А Clark-Ivanova cycle is а closed sequence ofpaths where each Z vertex 

of the cycle is the path origin only once. For brevity, the cycle consisting of 
the paths [Zi!, Rp!, Z;,], [Zi2, Rp2 , Ziз ]' ••• [Zi" Rp" ZiJ will Ье designated as С 

~
;,Z;, .. ',Zi) 
! 2 , • The Clark-Ivanova cycle (in what follows, simply the 

р!' Rp2 , .. . ,Rp, 

cycle) is called even (odd) if it contains the even (odd) number of negative 
paths. Let us recall that а negative path corresponds to the interaction of 
various substances. Therefore an even (odd) cycle must contain the even 
(odd) number of interaction steps for various substances. А union of the 
arbitrary number of segments and cycles in which each Z vertex is the origin 
for only one segment or path is caHed а subgraph. The number of subgraph 
Z vertices is called its order. Below we consider the multitude of аll sub­
graphs containing the chosen set of vertices Zi!, Zi

2
, ••• , Zi, and Rp!, RP2 , ••• , 

Rp,' This multitude, г, is divided into two non-intersecting multitudes г+ 
and г- where г- is the multitude of аН subgraphs from Г containing the 
arbitrary number of segments and the odd number of even cycles, and 
г+ = г/г- is the remaining subgraphs. Then the foHowing numerical func­
tions for the subgraph elements are introduced. 

B;(z) = rJ.;p(Jwp/Jz;) 

for the segment [Zi, Rp ], 

B~p(z) = {3jp(Jwp/Jz;) 



for the positive path [Z" Rp , Zj]+ , and 

B~p(z) = - Cl.jp(JWp/JZi ) 
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(
Z" ... , Z, ) 

for the negative path [Z" Rp , Zj]-' А value for the cycle С 1 , is 
R

p" 
••• , Rp , 

called the product of its constituent paths taken with а negative sign. А 
value for the subgraph will Ье the product of the values of аН its segments 
and cycles. А coefficient of the subgraph G is expressed as 

(172) 

Here products are taken respectively along аН segments [ ] = [Z" Rp ], 

positive []+ = [Zj, Rp , Zj]+ and negative []- = [Z" Rp , Zj]- paths entering 
in the subgraph О. Let F = Ilfjjll Ье the Jacobian matrix for eqn. (151), i.e. 

N дw 
fij = L ую-8 

8-1 JZj 
(173) 

and Р(А-) = (-1)" det I F - А- Е 1. Clark [59] showed that а coefficient of A-k for 
the polynomial РЩ is equal to the вит of the values of the possible виЬ­
graphs ofthe (n - k) graph order corresponding to the reaction mechanism. 
In accordance with thispostulate, the following condition, which is suffi­
cient for the uniqueness of the positive steady-state point in eqn. (151), was 
obtained [5]: if there are по boundary steady-state points (it сап Ье checked), 
then а positive steady-state point is unique in the саве when, for апу totality 
r of the vertices Zi

" 
... , Zi, and апу totality r of the vertices R

p" 
••• , Rp, 

(r is the rank of the matrix [Yip]), the inequality 

L КО' ~ L. КО" (174) 
а'еГ+ О"еГ-

is fulfilled. 
А prooffor this statement is constructed in accordance with the fact that 

the latter inequality accounts for the sign ofthe coefficient in the polynomial 
Р(Л) at лn - r , which in turn is associated with the index of а steady-state point 
for the vector field (151) [60]. If this coefficient is positive at апу point of the 
positive orthant R:: z, z, > О, i = 1,2, ... , n, then the steady-state point is 
unique. 

Ifthe boundary ofthe simplex D = {z: Z, ~ O,1:.m;z, = 1} has опе attract­
ing steady-state point and ап arbitrary number of unstable points, then if 
eqn. (174) is fulfiHed, D has по internal steady-state points of the system, 
since а вmаll deformation of the D boundary сап provide а region Q to which 
а theorem about the relation between the field rotation and the sum of 
indices for internal steady-state points in Q is applied [60]. 

Ivanova also extended the аЬоуе principal statement to homogeneous 
flow systems (а homogeneous CSTR). In addition, оп the basis ofthe inequal-
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ity (174) she formulated: (1) the conditions to distinguish an area ofparamet­
ers for which а steady state is not unique and (2) those for the existence of 
an area of parameters for which а positive steady state is unique and 
unstable. 

W е apply these conditions to distinguish simple catalytic mechanisms 
ensuring self-oscillations of reaction rates (see Chap. 5). 

Ivanova and Tarnopolskii have realized а computation ofthis algorithm, 
thus making it convenient and applicable for composite reactions [61]. Let 
ив give воте examples of this algorithm application. 

W е wi11 consider simple examples, i.e. the Eley-Rideal and Langmuir­
Hinshelwood mechanisms for СО oxidation оп Pt. Bipartite graphs corres­
ponding to these mechanisms are represented in Fig. 3. In accordance with 
the general scheme, let ив list segments, paths and cycles of these graphs. 

For the Eley-Rideal mechanism [Fig. 3(а)] we have the segments 
[Pt ~ wi], [PtO ~ Ш1 ], [PtO -+ Wz], and the paths [Pt ~ ш: -+ PtO]+ , 
[ptO ~ Ш1 -+ Pt]+ , [ptO -+ Wz -+ Pt]+ . Here there are only positive paths. 
Negative paths accounting for the interaction steps for various inter­
mediates are absent. The numerals аЬоуе the arrows symbolize stoi­
chiometric coefficients. 

Pt ~wr 

2t ~2 
W1-~ PtO 

Pt ~W1 

i ~2 
W2 +-- Pto 

(1 ) (2) 

Cycles in this саве are only even (the number ofnegative paths equals zero). 
Here the graph contains only second-order cycles. The rank of the stoi· 
chiometric matrix is r = 1. First-order cycles do not exist here, hence in eqn. 
(174) the equality is fulfil1ed identical1y, i.e. а steady state is always unique. 

For the Langmuir-Hinshelwood mechanism [Fig. 3(Ь)] we have the seg· 
ments [Pt ~ шп, [Pt -+ шn, [PtCO -+ wз], [ptCO -+ ш2], [PtO ~ шl], 
[PtO -+ wз], 

and the paths [Pt ~ ш: ~ PtO]+, [Pt -+ ш;: -+ PtCO]+, [PtCO -+ ш2" -+ 

Pt]+, [PtO ~ Ш1 ~ Pt]+, [PtCO -+ wз ~ Pt]+, [PtO -+ wз ~ Pt]+, [PtCO 
-+ wз -+ PtO]- , [PtO -+ wз -+ PtCO]- . 

Here the rank of the stoichiometric matrix is r = 2. Therefore we will Ье 
interested in second-order cycles [Fig. 3(Ь)] 

pt ~W1 

2i ~2 
_ 2 

W1 +- РtO 

(1 ) 
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or, in short 

Here passing of the cycle corresponds to the arrows 

then 

(
Pt, 

С3 + 
Ш1 , 

РtO), 
Ш3 

ptCO) 

Ш3 

Here аН second-order cycles are еуеп. As shown in ref. 5, опе of the reasons 
for the non-uniqueness of steady state [violation of condition (174)] сап Ье 
the presence of а cycle composed Ьу the positive paths for which 
П;~JjijPj > П;~lаijPj' In our case this cycle (branching cycle) will Ье the cycle 
С3 for which {321 {313 = 2 х 2 = 4, а11 а2з = 2 х 1 = 2, and the necessary 
condition for the uniqueness of а steady state is not fulfilled. А comprehen-' 
sive numerical analysis of several steady states for а given system will Ье 
performed in СЬар. 5. 

Let us give опе more example considered in ref. 5. In the scheme of 
hydrogen reactions with oxygen for the totality of Z vertices corresponding 
to the substance ОН, Н, and О and of R vertices corresponding' to the 
reactions 

ОН + Н2 ---> Н + Н2О 

Н + 02 --> ОН + О 

О + Н2 --> ОН + Н 
the third-order subgraphs belonging to г- consist of the third-order cycle 

and the unions of the second-order cycles and segments 

(он, Н) (Н, 
С U [о, Ш3 ], с 

Ш1 , Ш2 Ш2 , 

The multitude г+ consists ofthe one subgraph being а uпiоп ofthe segments 
[ОН, Ш1 ] U [Н, Ш2 ] U [о, Ш3 ]' and LO'Er+ КО' = 1. In this case inequality (174) 
is not fulfilled since there are several cycles passing through the same 
reactions and substances from the same totality. The approach described is 
sure to merit а more comprehensive description with the greater number of 
examples. 
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5.5 SOME CONCLUSIONS 

А question arises: in what савев is а unique and asymptotically stable 
steady state realized? 

(1) Clo$ed systems. Here а rest point is always а PDE wherein the rate of 
every direct reaction is equal to that of the reverse reaction. 

(2) Ореn systems without intermediate interactions, i.e. those having по 
PDE but the mechanisms do not involve interactions between various inter­
mediates. 

(3) Ореn systems with рсв. Ап efRcient теапв to establish whether this 
point exists is to check the equality (169): М - l = S and а weak reversibil­
ity (these are sufficient but, generally speaking, not necessary conditions). 

Systems (1) enter into class 3 (а PDE point is а РСВ). Systems with linear 
reaction mechanisms belong to both class (2) and class (3) but these classes 
do not overlap since there are systems without intermediate interactions 
that do not satisfy the principle of complex balance (e.g. the Eley-Rideal 
mechanism for СО oxidation оп platinum metal). Оп the other hand, there 
exist reaction mechanisms containing steps of "intermediate interactions" 
but at the вате time always having а РСВ (e.g. the Twigg mechanism for 
ethylene hydrogenation оп nickel). 

(4) Оп the basis of the structure for а bipartite graph of the reaction 
mechanism, it is possible to formulate а sufficient condition (174) for the 
uniqueness of а steady state. Applying it to concrete reactions, it is possible 
to establish the parametric areas for which either а unique steady state 
exists or there is а multiplicity of висЬ states. 

Let ив emphasize the following important circumstance. In the introduc­
tion we Ьауе already spoken about а physico-chemical вепве of the соп­
ditions obtained for the multiplicity of steady states in the kinetic region. 
Now we will only stress that for linear mechanisms the steady state is, 
apparently, unique. If we deal with non-linear mechanisms and kinetic 
models (rather typical for heterogeneous catalysis), it сап Ье expected that 
the solution will not Ье unique. For non-isothermal systems it is а well­
known effect [62]. А new fact is the experimental and theoretical establish­
ment of висЬ effects in а purely kinetic region. Ттв behaviour сап Ье 
observed for ап ореп chemical system that is far from being in equilibrium 
(а model of such ап autocatalytic system was constructed Ьу Zeldovich in 
1941 [63]). Multiplicity of steady states is due to model non-linearity. In 
general it is the non-linearity that is responsible for the complex dynamic 
behaviour of ап оред chemical system. Frank-Kamenetskii, the author ofthe 
well-known book Diffusion and Heat Transfer in Chemical Kinetics, differed 
with Nalimov who believed that critical effects are possible only under 
fundamental changes in the reaction mechanism. Frank-Kamenetskii's opi­
nion was that jumpwise transitions from опе regime to the other take place 
under critical conditions that are not associated with variations in the 
mechanism of the chemical reaction itself but are caused only Ьу its поп-
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linear peculiarities. Recent studies have confirmed his viewpoint [64]. АН 
the results presented are the conditions to determine the areas with unique 
or multiple positive (either stable or unstable) 80lutions but 80 far по general 
results have been obtained that would permit us to judge the number of 
positive solutions in the case when there are several. This problem сап Ье 
solved only for concrete cases, i.e. kinetic models of comparatively smaH 
dimension. 
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