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t — oo to a positive PDE whose existence is suggested according to the
principle of detailed equilibrium. In general, if there is a positive PDE and
the initial conditions are always positive (all N, > 0), for none of the
substances does N, reduce to zero during the reaction time or tend to zero at
t — 0.

2.3 THERMODYNAMIC LIMITATIONS ON NON-STEADY-STATE KINETIC
BEHAVIOUR

In the previous section we introduced the Lyapunov functions for chemi-
cal kinetic equations that are the dissipative functions G. The function RTG
is treated as free energy. Since G < 0 and the equality is obtained only at
PDE, and for the construction of G it suffices to know only the position of
equilibrium N*, there exist limitations on the non-steady-state behaviour of
a closed system that are independent of the reaction mechanism. If in the
initial composition N # N¥, the other composition N’ can be realized during
the reaction only in the case when

(a) V' satisfies the same balance relationships as for N

Z%‘MI = Z a; N;

for any j or

=T

AN = AN (102)
(®)
GN) > GV (103)

The latter means that G is a monotonically decreasing function among the
solutions for kinetic equations.

With time the system can get from point N to point N’ only in the case
when G(V') < G (N). But it is not the only limitation. Let us return to a
system of three isomers (isomerization of butenes) (A, A,, and A,;) and
specify its PDE. According to Wei [30], at 230°C N¥ ~ 0.14, N§¥ ~ 0.32, and
N§ = 0.54 (the normalization conditionis N, + N, + N; = 1, i.e. the law of
conservation). In this case

G M(lnM —1) + N2<lnN2 -1>

I

0.14 0.32
In Ny
* N$<0.54 _1>
In, InN;,  NylnN;

= N, + N, 1

10.14 ‘ 20.32 0.54

Level lines for G [their equations are G(n) = const.] in the triangle
N, + N, + N, = 1areshownin Fig. 8(a). At g > min G(IV) on the boundary



131

G(N)>g
G(N)<g

(a) (b)

(c)

Fig. 8. Thermodynamic limitations on the dynamics of chemical reaction. (a) Level lines of G
in the system of three isomers; (b) disconnected multitude of the level; (¢) impossibility for the
crossing of a connected component for the multitude of the level.

D the line G(N) = g is no longer a closed curve and at g > min G(N), the
N =

level line G(N) = g breaks into several segments. Each of these segments
separates the triangle into two parts. In one of them G(N) > g; the other has
points with G(V) < g, but can also have such points where G(V) > g [Fig. -
8(b)]. One cannot get from region II [Fig. 8(c)] into region I during the
reaction, even if, at the initial instant, G(N) > g. This is due to the fact that
it is not possible for the solution of a kinetic equation to cross the G(V) curve
“from the inside” when going from region II into region I [Fig. 8(c)]. In this
case, a monotonic character of G along the solution would be broken.

It is clearly seen that, at a vertex of the reaction polyhedron, G achieves
its local maximum value (due to the strict convexity of G and the fact that
its minimum point is positive). Therefore near each vertex, as well as in the
vicinity of some faces, the G function can be used to construct a region that
is unattainable from outside. Let us consider the case of one vertex and then
a more awkward general situation.

Let N° be a vertex for the reaction polyhedron with outcoming edges d;,

., d,. On each edge G is a strictly convex function, therefore it has a
unique point of minimum d;. Let us express the corresponding minimum
value of G through M;

M, = min Ned, G(V) (104)
The maximum value of M, denoted as ¢(&ZP) is
egN°) = max M, (105)
1<igk

A connected component (a “piece”) of the surface for the GAV) = &(IN°) level
separates inside D the unattainability region near N°. This region must be
set by several inequalities. One inequality G(NV) = ¢(N°) appears to be in-
sufficient, since the G(N) = ¢(N°) surface usually consists of several com-
ponents (“pieces”) and we must describe a region near N° separated by one
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component. Therefore let us act as follows. We will designate the multitude
of all D vertices, except N°, through N °. Since &(V°) is the maximum value
for the minima of the G function along the D edges d, from N°, each d,(i = 1,
..., k) has at least one (but not more than two) point where G(N) = (™).
Let us take for each d; that point which is localized closer to N° and
designate it as e; (if this point is unique it will just be e;). Then let us
construct a convex envelope for all the e; and the whole of the D vertices not
coincident with N°

conv (ﬁ\°'U {e,, .., e.}) - (106)

Construction of convex envelopes consists of a system of linear inequali-
ties (it is a typical problem in linear programming; see, for example, ref. 31).
In the simplest cases a convex envelope can also be constructed directly.
This envelope can also be described parametrically without using inequali-
ties. For example, for a system of x,, x,, . . ., Eq points, their convex envelope
consists of linear combinations ,x, + ... + /Iq;q where 4,, ..., 4, are
non-negative values whose sum equals unity

conv {xy, . ., X} = {hx, + ...+ Lx ik = 0,
G =1..,9,4+...+41 = 1}

For our purposes, however, it is necessary to set a convex envelope (106) by
a system of inequalities. Let these inequalities be

L) =1 j=1,...,q (107)

Here 1; are linear functions and r; are constants.

A “region of unattainability” V(NP) near the vertex N° is set as follows:
Nlies within V(N°) when and only when G(N) > &°) and there exists such
j <j < g that L(N) <

V(W) = {NeD|GN) > &I\
. (108)
LIN) <

even if only for j(1 < j < q)}.

Let us illustrate the above by a model system of three isomers (butene
isomerization). For the analysis we will choose that vertex N° for which the
entire mass of the system is concentratedin A;: N, = N, = O, N, = 1.Incom-
ing edges correspond to the two possibilities: N, + N, = 1, N, = 0 [hy-
potenuse in Fig. 9(a)] and NV, + N; = 1, N; = 0 [a vertical cathetus in Fig.
9(a)] designated as d; and d,, respectively. A minimum G on d, is obtained
at the point with N;/N; = N¥/N¥,ie. at N, = 0.21 and N, = 0.79, and it is

equal to
M, 0.21In147 + 0.79In147 —1

In1.47 -1

112

It
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(a) (b) , (c) (d)
Fig. 9. Construction of the unattainability region for the system of three isomers.

Similarly, the minimum G on d, is achieved.at N,/N, = N%/N¥ at a point
N, = 0.37, N; = 0.63 and it is equal to

M, =2 037In1.16 + 063In1.16 -1 = Inl.16 —1

Tt is evident that M, < M, hence e(N°) = M,. A corresponding level line for
G is shown in Fig. 9(a). The points e, and e, are also shown on the figure.
Their convex envelope is a vertically hatched tetragon. Horizontal hatches
mark its conjunction with a multitude specified by the inequality
G(N) < &OP). The entire region of the point N* is w-invariant. It is the other
parts of the space near N° that is V(N®), i.e. the desired “unattainability
region”.

We will now describe the construction of an "unattainability region”
near the arbitrary multitude of vertices. Let it be a multitude E for the
vertices of the reaction polyhedron. P(E) will be a multitude of D edges
connecting vertices from E, and K(E) are those connecting elements E with

vertices not belonging to E. As before, let M, = min G(N) be a minimum G
Ned

on the edge d in the reaction polyhedron. An analog of ¢(N°) for the mul-
titude E will be

max M,

deK(E) (109)
that is the maximum M, for the edges going out from E. Let us eliminate from
P(E) all the edges for which M, < &(E). These edges are “cut” by the surface
of the G(N) = &(E) level. If the resultant graph is connected, its vertices are
elements of E and its edges are those P(E) for which M, > &(E). We will
construct an “unattainability region” V(E) which cannot be obtained by
conjunction of “unattainability regions” for the sub-multitudes of E (a
graph is called connected if, passing along its edges from any vertex, one can
get into any others). Let us choose on each edge d € K(F) a point ¢, for which
G(e;) = &(E). If there are more than one such points (i.e. two), we will choose
that which is nearer to the vertex from E to which this edge belongs. A
multitude of polyhedron vertices not belonging to E is designated as E. Let
us construct (describe by linear inequalities) a convex envelope of the
multitude

ek) =
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EU{es|d € K(E)} (110)

by joining E with the multitude of points e; at d K(E). Let this convex
envelope be set by the inequalities lj(N y>rG=1,...,q.The "unaitain-
ability region” V(E) corresponding to E can be described as follows: N lies
within V(E) when, and only when, G(N) > &(E) and there is at least one j
(1 <j < q) when L(N) < 1;, i.e.

VE) = {NIGN) > «E) .

and for at least onej (1 < j < @) L(N) < r;} (111)

The results of the analysis for a system of three isomers for various E are
represented in Fig. 9(a)—(b). Here, a convex envelope for the finite multitude
(106) is vertically hatched and its union with the multitude G(N) < &(E) is
horizontally hatched. The whole of the hatched multitude is w-invariant and
the unhatched region is just V(E). This example of only four multitudes
makes it possible to construct the “unattainability regions” that would not
be a union of those for submultitudes. Three multitudes each contain one
vertex and a fourth [Fig. 9(d)] includes two vertices, corresponding to the
cases when the entire mass is concentrated either in A, or in A,.

Thermodynamic limitations on the non-steady-state kinetic behaviour
can be formulated as follows. If the initial non-equilibrium composition is
N(0), then during the reaction a composition N(t)(t > 0) for which
GN(@1) = G(N(®) cannot be formed. In addition, it is also impossible that
there be formed compositions lying in those “unattainability regions” to
which N(0) does not belong (one must select the whole of “unattainability
regions’ whose construction is described above). In other words, there exist
several “unattainability regions.” For any initial composition N(0) there
are “unattainability regions’ to which it does not belong. During the reac-
tion, a composition from these regions cannot be formed. In addition, for the
compositions N formed, the condition G(V) < G(N°) must be fulfilled.

Thus for closed systems, proceeding from the known equilibrium composi-
tion and initial conditions, we can find a thermodynamically forbidden
region, i.e. that which would be “non-admittable” for the solution of kinetic
equations (18). It is never possible to get from one vertex of the reaction
polyhedron into some accurately determined vicinity of the other. In par-
ticular, if some initial substance is A (100%), the reaction cannot produce a
reaction mixture that would be some other substance completely (100% B)
and also have higher content compared with the given content of B. For one
reaction, concentrations that cannot be exceeded are equilibrium. For
several reactions the case is more complicated. Similar “unattainability
regions” exists near certain faces and, more generally, near multitudes of
vertices and edges of the reaction polyhedron.

So, what are the thermodynamic limitations on composition variations in
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the course of a complex reversible reaction following some unknown me-
chanism?

(1) Starting from positive initial data, we cannot get into boundary points,
i.e. during the reaction we cannot obtain a reaction mixture that would not
contain at least one of the initial substances. (This was shown in ref. 32 on
the basis of Wei's axiomatics [30].)

(2) Boundary points cannot be the w-limit for the solutions starting from
positive initial data.

(3) There are no damped oscillations near the point of detailed equi-
librium.

(4) According to a given position of the detailed equilibrium point and a
given initial composition, we can construct, using the above procedure, a
region of compositions that can not be formed during the reaction.

2.4 LIMITATIONS ON NON-STEADY-STATE KINETIC BEHAVIOUR IMPOSED BY THE
REACTION MECHANISM

Let the position of the equilibrium point and the reaction mechanism be
known. In this case we can use the available information (a list of steps and
equilibrium constants %; /k; ) to construct stronger, compared with ther- -
modynamic, limitations on the non-steady-state reaction behaviour. With-
out going into technical details, let us describe the construction of these
limitations through a simple example, the same isomerization of n-butenes
over Al,O;. Let us divide the reaction polyhedron by equilibrium surfaces
for individual steps. The regions obtained will be referred to as compart-
ments [Fig. 10(a)]. Inside each compartment, all steps follow a definite
direction, i.e. the rate of each step has a fixed sign. Showing a direction the
reaction follows by an arrow, every compartment can be prescribed by the
oriented graph of predominant directions as shown in Fig. 10(a). Here
A, - A, means, for example, that for any composition from this compart-
ment the reaction A; 2 A, proceeds towards the formation of A, from A, or,
which is the same, w, > 0. It can be noted that the graphs for all the
compartments shown in Fig. 10 are acyclic, i.e. there are no schemes

Al 7/-\2 Aq <7A2
Az \A:;

This is a general fact. For monomolecular (or pseudo-monomolecular) reac-
tions the graphs corresponding to compartments are acyclic. A similar
property for the systems having either bi- or termolecular reactions is more
complex. It can be formulated as follows. If every edge in the graph of
predominant reaction directions for some compartment is ascribed to a
positive “rate” constant k and chemical kinetic equations are written with
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i ‘—L\y (a) (e)

r={1,-1,1

x:E:J} T —‘g

A={1,-1,-1}

A={-1,1,1
r={1,1,-1

x= 11,71 Ny

4

Fig. 10. System of three isomers A 2 A2 Ay 2 AL (a) Compartments and predominant
directions of reactions; (b) construction of the minimal w-invariant set J(N); (c) sets J(NP) for
the reaction mechanisms 4, = A, A; 2 A, (horizontally hatched) and A, = Ay, Aj= A
(vertically hatched).

such irreversible steps, then at ¢ — oo a mixture, which is non-reactive ac-
cording to this scheme, will be obtained. For example, for the scheme

A+ A, > A,
A - A, + A,

the equations will be of the form
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N, - kNN,

il

N,
Att — o we will obtain a non-reactive mixture of N, and N,. A graph of the
predominant directions corresponds to the direction of the conversion of the
initial components either into one substance or a mixture of non-reactive
components.

The other way to describe this property is as follows. A convex envelope
for the multitude of stoichiometric¢ vectors for the edges in the graph of
predominant directions written as if they were direct reaction steps does not
contain zero, i.e. there are no such non-negative 4, .. ., 1, as

— kBN, N, + kyky

At oo+l =1
M+ o+ Ay, =0

It can also be interpreted in terms of the bipartite graph for the reaction
mechanism (see Sect. 1.3).

In each compartment a sign for all the w, , has been determined, i.e. we
know which of the inequalities w,, > 0 or w,, < 0 take place for the
compositions lying inside it. Therefore in any compartment we can write
7 W = lw,, |7, sign w,,

5,0

where sign w,,, = 1if w,, > 0 and —1if w,, < 0. A value for sign w,, is
dictated only by the compartment and does not change if we vary a composi-
tion inside it. Since the rate constants are unknown and we do not know
|w; | either, we can nevertheless write

aN - -
- = S Z [ws| Vs 8181 W, + VZ }wvi’ya 81gn W,
dt s -

This implies that an V.« dt 1 es inside a convex cone generated by the vectors
y and sign w,,: dN/di is a linear combination of these vectors with
positive coefficients. It is passible to construct such a cone for all compart-
ments [Fig. 10(a)]. Since dN/d¢ belongs to this cone, for any initial con-
ditions N° a region can be constructed inside of which lies a solution for
kinetic equations that emerges from this point at ¢ = 0. For this purpose it
is necessary to construct a convex cone generated by the vectors 75,,, sign
w, , from this point as if it were zero. If this cone is continued up to the
compartment boundary [Fig. 10(b)], it is necessary from the intersection
points to construct cones corresponding to the neighbouring compartments,
ete. A procedure to construct such a set for a system of three isomers is
shown in Fig. 10(b). The first cone restored from AN° is not hatched. A set
obtained at a second step from the boundary of neighbouring compartment
is hatched horizontally, a third step is shown by vertical hatches and the
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last, the fourth one is completely black. After the fourth step no new mul-
titudes are obtained and the construction is completed. The obtained set is
w-invariant and contains a positive semi-trajectory emerging from point N°.
A finite character of the construction procedure is a general fact that is valid
for any system. Its proof is cumbersome and hence is omitted.

The multitude constructed for point N°, and designated as J (W°), is w-in-
variant for all systems of chemical kinetic equations obtained in accordance
with the mechanism prescribed and having N* as a PDE. Moreover, it is
minimal among the multitudes possessing this property, i.e. if a multitude
that is w-invariant for all systems with a given reaction mechanism and an
equilibrium point, contains N°, it also has J(A°). In the general case, it is
constructed as follows [33].

(1) For each compartment, a signature, i.e. a series of /, , numbers (one for
each step), A, , = sign w, , is written. This multitude is denoted as A and the
corresponding closed compartment as P,. P, consists of those N for which

As oWy, = O

N (112)
P, = {N|i, ,w,, = 0 for all values of s, o}

(2) Each compartment is associated with a convex cone ¢, generated by
vectors A, ,, ¥, ,; this cone consists of vectors of the type

Y Xy oVeoheo (113)

Where all x, , > 0 and summation is performed along all reactions (for all
values of s, ¢). It is necessary to specify a cone @, by linear inequalities. This
is an established problem of linear programming (see, for example, ref. 31)
and we will omit the methods of its solution. Let these inequalities be found
as lf‘ (N) > 0, where lf‘ (N) are linear homogeneous functions.

(3) An operation is constructed that associates each closed multitude M
from a reaction polyhedron with the other one J,(M)

S (M) = LA) (P VM) + @) () P (114)

Here it is necessary to find for every compartment P, a multitude P, (| M
consisting of those points M that lie in P,. Then the multitude (P, () M) +
@, is constructed. It consists of the points of N + ¢ type, where Ne P, N M,
g € Q,. For every N e P, () M the multitude N + @), is prescribed by the set
of inequalities I}(y) > I(N), therefore the multitude M + @, can be des-
cribed as

(P, M) + Q, = {Njsuch N' € P, (| M exists as }(N) > I'DV)
for all values of j} (115)

(P, () M) + @, comprises those N for which there exists N' e P, (} M
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satisfying the condition ! OE I*(N') at any value of j. In particular
N+ @, = (M) > I'(Q°) at any value of j (116)

In the construction the internal points of (P, [} M) can be eliminated. Tt
suffices to take only boundary points

Pr(YM) + @ = AR (VM) + Q, a1

where 0 is the symbol for transition to the boundary. If M is prescribed by
a finite (alternative) set of inequalities, (P, (| M) + @, can also be given by
inequalities, even if the initial inequalities are no more linear. Since the
method of their construction is cumbersome, it is omitted here. After con-
structing (describing by inequalities) (P, ﬂ M) + Q,,itis necessary to take
its intersection with P, (to add all sets of inequalities with w, ,4,, > 0 for
all s,0).

(4) A minimal closed w-invariant set containing N° is constructed as
follows. At first J,({N°}) is described, then J,(J,({N°})), J,(J,(J,((N°}))),
ete. This process will be interrupted after a finite number of construction
steps. In Fig. 10(b) a white area in the outlined region is J,({N°}). Together
with a horizontally hatched section it forms o, (J,({N°})), i.e. a horizontally
hatched part — points belonging to J, (J,({N°})) but lying outside J, ({N°}).
Similarly, a vertically hatched area belongs to o, (J,(J,({N°}))), does not
enter oJ,(J,({N°})), and a black area is that of new points in Ji({N°})
compared with J, (J, (J, ({N°} ))). During the next step of construction no new
points appear, i.e. the construction process is interrupted and
JAP) = JH{N°}). In justice, it must be emphasized that at finite times
closed system behaviour can be rather complicated, i.e. only their limit
behaviour is simple. An example is the famous Belousov-Zhabotinskii reac-
tion [13].

Multitudes J(N°) change greatly depending on the reaction mechanism.
Therefore we can test (verify) hypothetical reaction mechanisms using these
multitudes. If a kinetic curve N(t), N(0) = N°, is obtained, we can say
confidently that, when N (z) is within experimental accuracy and given limits
of the trial, lies outside J(I°), a hypothesis on the reaction mechanism,
according to which this J(N°) is constructed, must be eliminated. Multitudes
J(N®) for a system of three isomers and various hypothetical (two-step)
reaction mechanisms A, 2 A,, A, =2 A, (horizontal hatches) and A, 2 A,
A, 2 A, (vertical hatches) are illustrated in Fig. 10(c). As can be seen, the
differences between these multitudes are distinct; they do not even intersect
(to be more precise, they intersect along the boundary).

Thus, our knowledge of reaction mechanisms and equilibrium constants
makes it possible to construct limitations on the unsteady-state behaviour of
chemical reactions. These limitations are essentially stronger compared
with ordinary thermodynamic limitations. Since they (in contrasted to ther-
modynamic limitations) depend on the reaction mechanism, their validity
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can be tested for experimental curves. Thus hypothetical reaction mechan-
isms can be tested without calculating rate constants.

In conclusion of the discussion of reaction dynamics in closed systems, it
can be suggested that the principal problems here have been solved: closed
systems “have been closed”. The case is different for open systems. Progress
in their study has been extensive. A large number of publications are devot-
ed to the analysis of various dynamic peculiarities (multiplicity of steady
states, self-oscillations, stochastic self-oscillations) in various open systems.
It can hardly be said that most preblems here are completely clear.

3. Formalism of chemical kinetics for open systems

3.1 KINETIC EQUATIONS FOR OPEN SYSTEMS

If, in the system examined, we can neglect spatial differences in the
reactant concentrations, a continuous stirred tank reactor (CSTR) model for
a reactor can be used. A set of equations is constructed accounting for the
process of the totality of reactions under examination at a constant volume.
It is then supplemented by a new factor which accounts for the substance
exchange with the ambient medium. As usual, concentration equations are
used that are analogues to those for substance quantities since the reaction
system volume is assumed to be unchanged

Uout =8

. Sco . bt Ut
g - 2 g in =%
E ngsws(c)Jr;vawa(C)Jr 7 T €

(118)
&t = Y75, w,()

—gas —s§ —ssur

where 7. = Yo » Vs = Vs 5 Uy and U, are the space velocities for the input
and output flow of the reaction mixture, respectively, and ¢;, is the vector
whose components are the concentrations of the gaseous substances in the
reactor input.
When considering catalytic reaction, the gas-phase processes occurring
without a catalyst are often neglected. Equation (118) then takes the form
= S -8 ~ (U Eg — U t?:'g)
g = 2 4 ~nZin T Pout® /
c V ; Ys ws (C) V
. (119)
¢t = Y yiw(e)
It is often suggested (without sufficient grounds) that v, = v, whereas

both volume and pressure remain unchanged during the reaction. Strictly
speaking, any catalytic reaction proceeds with changeable volume since
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gases are partly adsorbed on the catalyst surface. If the pressure is assumed
to remain unchanged, we must have v, # vg,. Sometimes changes in volume
associated with adsorption and desorption can be neglected, particularly
under steady-state conditions. When considering unsteady-state behaviour
one must remember that, generally speaking, v,, # v,,. This difference is
particularly distinct for the systems with low gas quantities or large catalyst
surfaces and also for the “weakly open” systems (see below).

We will make an attempt to determine v, from the equation of state
assuming the pressure to remain unchanged

dP

P = RT; ¢ = const. 7 = 0 (120)

Under isothermal conditions we obtain from eqn. (119)
RT RT .
Uout = Uin —I)— Z cign,i + S _P—- Z (ws(c) Z ng) (121)

As usual, the input concentrations are normalized in the following natural
way

P
g =
Yhi = 77 (122)

i

In this case eqn. (121) for v, takes the form

tos = v+ ST T | 0@ T (123
Let us designate
v, = By (124)

where V, is the change in the gas volume for the sth step (at a unit rate of
this step).

Taking into account eqn. (123), kinetic equations (119) can be written
vin(;in — Eg)

- S 8 g
e 2 -
= ST w @ - vt + el

(125)
& = Y w7,

s

These equations are applicable only when the v,,; value found in accord-
ance with eqn. (123) is non-negative

Vo = Vi + SY w,(e)V, = 0 (126)

Condition (126) is automatically fulfilled if v,, is sufficiently high

References pp. 183-184



142

vy, > S max <— ¥ ws(E>Vs) 127
Here the maximum is taken over all possible concentration values at a given
pressure and balance limitation.

If condition (126) is not fulfilled, in the solution of eqn. (119) we can have
the case when v,,, < 0. In this case there is a decrease in the volume of the
mixture due to the reaction being faster than its possible increment by virtue
of the supply of substance from outside. Remaining in the framework of this
model, we can eliminate a negative value for v, but assuming that v,,, = 0
at

Uin + SZ ws(z)‘/s < 0 (128)

Otherwise the model must be modified. For example, eqn. (119) can be
supplemented by the equations accounting for the pressure drop of the
system.

Let us show that, in the steady state found in accordance with eqns. (119)
and (123), the condition (127) for the non-negative v, is fulfilled. If
¢¢ = ¢° = 0, then according to eqns. (119) and (123) we obtain

C U

~ (8 U; S —g i
gl & Yin - = in
“(Fruvi ) - FEn

(129
S s )
0 =
V g ‘yS wS
Vectors y, must satisfy balance limitations. For example

Z my; = 0
i1

where m; is the molecular weight of substance A, if A; is the gas-phase
components, or the molecular weight of a surface substance minus the
molecular weight of the catalyst (£7_, m; NV, is the global mass of the gas in
the system and of the adsorbed gas). Using this limitation and adding
equalities (129) with coefficients m;, we obtain

Z miczg<‘§/ 2wV, + %) = v—§ Z m;Ciin
or

S v v;
gf = vV o+ _"2> = g
p (V 25: wS 8 V! p]n V
where pf and pf, are the gas densities in the reactor and its input, respective-
ly. If v, p& # 0 (its equality to zero indicates that the.system is closed), then
p? # 0 and for the steady state we obtain a relationship between v, and v,
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Uin 05,

Un + SY w,V, = Uy = o (130)
This corresponds to the fact that, under steady-state conditions, the input
and output mass flows are equal.

Thus to examine steady states, eqn. (123) can be used without limitations
since it does not result in negative values of v,y.

As an example, let us give equations corresponding to two catalytic
reactions, namely the simplest reaction of catalytic isomerization and the
oxidation of CO (on Pt).

Example 5. The substances are represented by A, = A, A, = B, A; = Z,
A, = AZ, and A; = BZ in the reaction mechanism (1) A + Z & AZ, (2)
AZ 2 BZ,and (3) BZ =2 B + Zor by A,; in the mechanism A, + A; =2 A,,
A, 2 A;, and A; 2 A, + A;. According to the law of acting surfaces,
w, = kicicg — kie, wy, = kyc, — ks ¢y, and wy = Rk ¢; — k3 c,cy. There are
no limitations on the constants associated with the principle of detailed
equilibrium; all vectors 7, are linearly independent

o Rl I SR Y .
S ) 0 ’ 1

-1 0 1

—_ —5 —§

Y, = 1 Y2 = | ~1 Vs = 0
L 0] 1 -1

_EE - § (—’};gw + ng T "‘gw ) + vingign vcuv;Eg
AR 2 Wy YsWs % %

fs —_! —5 —5

C° = YWy + YWy + P3Ws

or

e = — Sw; | VinCuin _ Uouily

! 1% 1% 1%

é - Sw3 UinCoin _ Uout Co

: Vv 4 %

€3 = — w; + W

C, = W; — W,

Cy = Wy — Wy

Unlike closed systems (see Sect. 1), the law of conservation, including gas
quantities, cannot be used. The system is open with respect to gas and it is
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for this reason that the balance ¢, + ¢, + ¢; + ¢, + ¢; = const. cannot be

applied. As to the law of catalyst conservation¢; + ¢, + ¢; = const. is valid

since catalyst is neither introduced nor removed from the system.
Equation (123) for v, takes the form

Uout = U + S(‘/lwl + ‘/Sw"i)

During the second step, the volume is constant since gas does not take part
in it at all. Changes in the volumes V; and V] for the first and third steps are
equal

Finally
by = v — w,RTS N wyRTS
. n P P
[recall that we proceed from the normalization condition (124): Z¢;;, = P/

RT].

An assumption of constant global gas pressure in the CSTR gives one
more law of conservation, i.e. ¢, + ¢, = const.

The laws of conservation for the catalyst amount ¢; + ¢, + ¢; = b, =
const. and the gas pressure ¢; + ¢, = b, = const. along with the natural
conditions of non-negativity for ¢ account for a convex polyhedron. This
polyhedron determined by fixed values of the balances, in this case catalyst
and pressure balances, is a balance polyhedron I,. Unlike the polyhedron D,
the structure of the balance polyhedron D, is, as a rule, rather simple
(formally D, is a particular case of reaction polyhedra). If there exists only
one type of active site for the catalyst and accordingly one law of conserva-
tion with the participation of concentrations of intermediates, then D, is a
product of two simplexes D, (gas) and D, (surf). The dimensions of D, (gas)
and D, (surf) is a unit lower than the number of the corresponding substan-
ces, gaseous or those on the catalyst surface. Thus in the case under con-
sideration, D, consists of the vectors

51

= ey

c =|_|=e¢
CS

Cy

Lcs;
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N C — .
where the vector ¢° = ,: 1:, lies in the simplex D,(gas) and ¢ = Cs
Cy

Cs
enters into the simplex D, (surf). D, (gas) consists of those

c -
[ IJ for which ¢; + ¢; = by, ¢; 2 0, ¢; = 0 [Fig. 11(a)], and D, (surf) is
Cy

C3

composed by those| ¢, | for which ¢; + ¢, + ¢5 = by, ¢; > 0,¢, > 0, and

Cs
¢; > 0 [Fig. 11(b)]. D,(gas) is a one-dimensional simplex (segment) and D,
(surf) is a two-dimensional one (triangle).

Example 6. The catalytic oxidation of CO on Pt. The substances are
represented by A, = O,, A, = CO, A; = CO,, A, = Pt, A, = PtO, and
Ag = PtCO. A detailed mechanism will be a combination of the impact
(Eley-Rideal) and adsorption (Langmuir-Hinshelwood) mechanisms (1)
A+ 2A,22A;, 2 A+ A2 A, B) A, + A;— A, + 2A,, and @)
A, + Ay - Ay + A,

Limitations on the rate constants imposed by the principle of detailed
equilibrium (see Sect. 2) have been fulfilled, since steps (3) and (4) are
simultaneously taken to be irreversible. Stoichiometric step vectors are

[—17 [ 0] 0 0
— —g —g —g
7? = 0 v2 = | -1 s = |0 Ve = [ 1
L 0] i 0] 1 1
27 [ —17 2 1
Vo= 2| T=] o %o=|-1] 3=]|-1
L O_ L 1_1 -1 0
€2
by Do (surface)

C4

(a) (b)

Fig. 11. Balance polyhedra for catalytic isomerization. (a) For gas; (b) for surface compounds.
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In accordance with the law of acting surfaces we have

w, = ket — kick
wy, = kicey — kic
wy; = ksCsCe
wy = kyCycs

Kinetic equations for this system are of the form

- S g —§ —g —8 Uingign Uou Zg
¢t = ‘—/(771w1 T YWy + yaWy V4w4)+T‘*—{/—
¢ = YWy + YWy + VaWy + Va0,
or
S UinCiin Vot
& = — —w + in~lin _ Yout™l
-5 Cw )+ Lectn _ Zas
S Vin Co; Vot €
é - = —w —w + in¥2in _ Yout*2
=5 : ) + dotm _ Lous
. S vin CS in vout Cy
b = =— wy + w,) + = ows
3 V ( 3 4) V V
¢ = 2w, - wy+ 2w; + wy
65 = 2w, - wy; — w
&g = Wy — Ws
An equation for v, is
vout = Uy + S(wl‘ll + wz% -+ w3‘/3 + w4 ‘/4)
— RT — RT RT
i = 5 V., = 5 v = 5 V. = 0
Ultimately
RT
Ugut = U T S T (_ wy — Wy + LU3)

Remember that here and in what follows we proceed from the condition
(124), i.e. . ¢%,, = P/RT.
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The laws of congervation for the catalyst concentration and gas pressure
are expressed asi¢c, + ¢; + ¢ = b, = const.ande¢, + ¢, + ¢; = b, = const.
Therefore a balance polyhedron is a product of two two-dimensional sim-
plices (triangles).

3.2 “WEAKLY OPEN” SYSTEMS

Sometimes the literature cites postulations implying that, when the veloc-
ity of an influx (and correspondingly of an efflux) of substances tends to zero,
open systems tend to their corresponding closed systems, demonstrating a
similar dynamic behaviour. In fact, this it is not quite true. As usual, even
the right-hand sides of CSTR equations (125) do not tend to those of the
equations for closed systems. The latter do not contain the summands S/V
Esws(?)K?g. An exclusion is the case when all V, values are zero, i.e. all
reactions proceed with preserved volume (the number of gas molecules in
both the right- and left-hand sides of the stoichiometric equation is the same
for all steps). For catalytic reactions it never holds true since in every case
there are steps with a variable volume, e.g. an adsorption step. But, even in
the case when all V, values are zero, the transition from a closed to an open
system cannot be treated as a continuous process. This is due to the fact that
closed systems have balance relationships (linear laws of conservation). In
open systems even those having low flow velocities, the balance relation-
ships involving the participation of gas-phase components are not fulfilled.
This fact can be interpreted as follows. In the transition from open to closed
systems a bifurcation occurs and the point v, = 0 is that of bifurcation.

Let us consider open systems at low v,, in two stages. First let us assume
that both v;, and v,,, are low and time-dependent, but are such that the gas
pressure in the reactor is in the range P,,, > P > P, or, equivalently,
boax > Z ¢ > by, > 0, where by, = Po/RT and b,,, = P,../RT. This
agrees well with reality, i.e. even if we want to, we cannot obtain a pressure
in the reactor which would be either equal to zero or higher than some very
high P,,..

Kinetic equations in “weakly” open systems will take the form*

3 S —E ~ Uiy (t)zm Uout (t)zrg
€ = _
¢ v ; ews(e) + =57 v

& = Y (131)

where, in accordance with the assumption, v;,Z; ¢;;, < ¢ and v, Z; ¢f < &.

Let G be the Lyapunov function corresponding to a closed system at a
constant volume (see Sect, 2). We will examine its behaviour using the
solutions of egn. (131).

* We consider here reactions on the surface. The general case is examined in a similar way.
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Uin CL in vout 4

G = —SZwln( >+Zacg<‘V"' _T> (132)

Using the condition of smallness of v, Z;¢; ;, and vy, Z;¢; o We obtain from
eqn. (123)

G < —SZwln( >+ Z@cg (133)
In each reaction polyhedron, the region specified by the inequality
w; *(c)
- 8> w,c)ln < >+ 0 (134)
L@t 6 Z acg

contains the entire reaction polyhedron, except a certain ¢-small vicinity of
the PDE and probably a small vicinity of some boundary points of the
polyhedron. The latter is attributed to the fact that

oG cf
- ()

and tends to oo at ¢f — 0. Let us suggest that the system has no boundary
equilibrium point (it is essential). There exist such ¢, > 0 and r > 0 that, in
any reaction polyhedron where the inequalities b, > Z;cf > b, are ful-
filled for some its points, a solution of the kinetic equations for the closed
system ¢(t) with the initial conditions ¢(0) lying in this polyhedron, belong
at ¢ > ¢, to the region specified by a G(c) < § type of inequality and loc-
alized at a distance > r from the polyhedron boundary. This follows from the
fact that, in the absence of boundary equilibrium points, a positive PDE is
the only possible w-limit one for the solutions of chemical kinetic equations
describing closed systems. It is known (see, for example, ref. 34) that, during
a finite period of time, the solutions of differential equations are con-
tinuously dependent on their right-hand sides, i.e. they vary slightly with
small changes of these parts of the equation. It is therefore possible to find
such ¢, > 0 since, at 0 < ¢ < ¢,, a solution for egns. (131) describing a
“weakly open” system at t > ¢, (and hence at ¢ = ¢, since a choice of the
initial time instant changes nothing) lies in the region specified in the
reaction polyhedron corresponding to ¢(t,) by the G(c) < & -type inequality
(0’ can already differ from §). This region is localized at a distance d > r/2
from the polyhedron boundary (for estimates, one can also take any other
positive number that is lower than r). It can be interpreted as follows. The
smaller the value of ¢, the closer is a solution of eqns. (131) for open systems
(at a segment [0, £,]) to the corresponding solution for closed systems.
Choosing a sufficiently small value of ¢, it is possible to show that ¢(Z,) for
an open system will lie in the “region required” spec1ﬁed by any prescribed
inequality G(c) < & with &' > .
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These regions in all reaction polyhedra can be described by the same
inequality. For this purpose let us recall (Sect. 2) that we constructed G(¢)
using an arbitrary PDE not necessarily lying in the examined reaction
polyhedron and showed that this function is a Lyapunov function for any
reaction polyhedron. Now let us introduce one more Lyapunov function
which differs from the previous one in every reaction polyhedron by a
constant, depending, nevertheless, on this polyhedron. Let us prescribe a
function ¢*(c) whose value is PDE accounting for the initial conditions ¢
(lying in the same reaction polyhedron). Let us determine

Glc) = Go) - Gc*()) (135)

Now G(c*) = 0 for any PDE ¢* irrespective of which reaction polyhedron it
belongs to. Using a continuous dependence of the solution ¢(¢) for eqns. (131)
on the right-hand side of these equations, we can find for any § > 0 such
t, > 0Oande, > Othat,att > t,and 0 < ¢ < g,, the solution ¢(2) lies in the
region prescribed by the inequality G{c) < 4.

PDEs form a surface in the multitude of positive vectors. A multitude
formed by the inequality G(c) < 6 is a certain vicinity of this surface
narrowing towards it at 6 — 0. At first, with sufficiently small ¢ values, the
solution of eqns. (131) behaves like a closed system. For a finite period of time
it gets into a small vicinity of the PDE surface, but at the same time remains
close to the solution of closed systems. In this vicinity motion is controlled
by the substance exchange with the environment and under our assumptions
it can be rather complicated. The solution, however, will never leave this
area if ¢ is sufficiently small. Here we proceed from the suggestion that closed
systems have no boundary equilibrium points. But if they do exist, then by
opening a system they can be made stable. The area of their attraction region
tends to zero at ¢ — 0. Hence, the presence of boundary points can also be
a source of bifurcation when “opening” a system.

Let us consider the case of homogeneous system when v, and v, are low
and constant. Let b(c) be a linear function of the concentrations preserved
in a closed system. Then for the open system we have

db(c)

dt = vinb(zin) - Uoutb(?) (136)

and all summands containing y, and w, reduce to zero in accordance with the
law of conservation b(c) = const. for a closed system. Equation (136) is
differential with respect to b(c). After its solution we obtain

Uin b (E:in )]

out

Uin b(gin )

out

ble(®) = + exp {— Upyl} [b(?(o)) - (137)
At t — oo, we have b(c(t)) - vy, b(C;,)/vow and this result is independent of
the smallness of vy, and v,,,. It is only necessary that they will be constant

and the system homogeneous. In the case where v, and v, are sufficiently
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low and ¢(0) is not a boundary PDE, motion takes place at t —» oo in a small
vicinity of the PDE lying inside the reaction polyhedron that corresponds to
the balance relationships

be) = blei)

(138)

out

We know that a PDE is stable as a linear approximation (see Sect. 2). Whence
from eqns. (137) and (138) we establish that, at sufficiently low v, and v, and
t — o0, a solution of the kinetic equations for homogeneous systems tends to
a unique steady-state point localized inside the reaction polyhedron with
balance relationships (138) in a small vicinity of a positive PDE. If
B(c(0)) = b(¢,,) Vin/Vou, then at low vy, and v, the function ¢(2) is close to the
time dependence of concentrations for a corresponding closed system. To be
more precise, if vy, — 0, Uy = 0, Uy, [Uousr €(0), Ty, are constant and ¢(0) is not
a boundary PDE, then we obtain max || c() — ¢4(t)|| — 0, where ¢, (¢) is the
solution of the kinetic equations for closed systems, ¢, (0) = ¢(0), and || || is the
Euclidian norm in the concentration space.

3.3 STABILIZATION AT HIGH FLOW VELOCITIES

For homogeneous (completely flowing) open systems a steady-state point
becomes unique and stable at a very high constant velocity of the flow [35].
In this case the concentrations of gas-phase components rapidly become
almost constant and their ratios are close to those for the input mixture.
This fact is independent of a concrete type of the w(c ) function. To confirm
this postulate, let us consider eqns. (125) for a balance polyhedron D,. Since
v;, is very high, the inequality (127) is fulfilled automatically and we can
write

vin(zin - E)
\%

where F(c) is independent of v,

o> - .- )

As D, is a convex restricted w-invariant set, it contains at least one steady-
state point of eqn. (139). Note that, if starting from some v;,, for any two
different solutions of eqn. (139) lying in D,, ¢'(¢) and ¢2(¢), the function
e* @) — ¢*(®) || is monotonically reducing to zero, the steady state is unique,
and any solution lying in D, tends to this steady state at t — co. It is the
distance to this point that will be the global Lyapunov function for eqn. (139)
in D,. Let us investigate at which values of vy, the functlon lic'@® — 2@l
decreases monotonically.

¢ = F@) + (139)
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S5 IE0 -FOI = @0 - 0, PE) - FE) -
~ 60 - e01PE < o0 (140)

Here (, ) is the ordinary scalar product that is the sum of coordinate pro-
ducts: (%, 5) = T ay; | IP = ().

Since the inequality (140) must be fulfilled for arbitrarily close ¢* and ¢Z
values, we obtain

B¢, PLAC) - B2, 80) % < 0 (141)
where A ¢ is any non-zero Vector satlsfymg the condition Z;Ac; = 0, as
vectors of the concentrations ¢! and 2 must correspond to the same pressure
(they lie in the same D,), and F o= (0F;/dc;) is the matrix of partial deriva-
tives at the point ¢.

Due to the convexity of D, (here it is merely a simplex), the local condition
(141) is sufficient to claim that eqn. (140) is valid. Inequahty (141) is fulfilled
if the maximum eigenvalue A, of the matrix % (F; + E™) is lower than

U/ V at any ¢ from D,.

Anax [ (F + E’T)] < UT‘/'—‘ for any ¢ € D, (142)

An accurate formula for the upper limit of these A_,, in D, cannot be given.
Hence it is recommended that individual v, values are found for every
kinetic model. The stability of the matrix

Lav o By - (%)7
5+ B - (%)

can be tested, for example by using the Routh-Hurwitz inequalities.

We can also present simpler estimates for v,, when the inequality (142) is
fulfilled and D, contains a unique and globally stable steady-state point. Let
us apply the Hirsch theorem [29, p. 185]

oF, oF,

1 m
= p X +
aCj aci

Vsl <

1 < i,j < n)

(Note that n is the number of substances.)
It follows that a sufficient condition for the validity of eqn. (142) is

oF,  oF,

V  max oF; | OF;
dc; dc;

U; > h . .
i 2 ij,c¢

1 < i,j € nceD,)

It is also possible to apply other estimates for the eigenvalues (see ref. 29,
pp. 185-222).
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Thus if the flow velocity in a completely flowing (homogeneous) system is
higher than a certain value, the balance polyhedron contains a unique
steady-state point that is globally stable, i.e. every solution for the kinetic
equations (139) lying in D, tends to it at ¢ — co. Note that a critical value
for the flow velocity at which this effect is obtained can depend on the choice
of balance polyhedron (gas pressure).

A similar claim for heterogeneous systems is, generally speaking, wrong.
Indeed, gas concentrations rapidly become close to some values controlled
by the balance equations and concentration ratios for the input gas flow. But
in close proximity to this value any dynamic behaviour is possible, i.e. a
multiplicity of steady states, self-oscillations, etc. The surface state can,
however, vary in a rather complicated manner. Figuratively speaking, non-
trivial dynamic behaviour of heterogeneous systems cannot be “inhibited”
(by a heavy flow).

4, Quasi-stationarity

So far the quasi-steady-state hypothesis introduced in 1913 has remained
the most favourable approach to operating with chemical kinetic equations.
In short (and not quite strictly), its most applicable version can be for-
mulated as follows. During the reaction, the concentrations of some (usually
intermediate) compounds are the concentration functions of the other (usu-
ally observed) substances and “adapt” to their values as if they were steady-
state values.

As usual, this hypothesis is associated with the names of Bodenstein and
Semenov. The latter introduced a concept of partial quasi-stationarity rea-
lized for some intermediates. Christiansen described the history of the pro-
blem as follows {36] *“... the first who applied this theory was S. Chapman and
half the year later Bodenstein referred to it in his paper devoted to hydrogen
reaction with chlorine. His efforts to confirm his viewpoint were so energetic
that this theory is quite naturally associated with his name”.

In 1940 Frank-Kamenetskii made an attempt to formulate mathematical
conditions for the applicability of this approach [37]. A strict formulation for
the problem of a mathematical status for the principle of quasi-stationarity
was suggested by Sayasov and Vasilieva [38] in terms of the theory of
singularly perturbed differential equations.

Substantiation for this hypothesis is constructed on the availability in the
initial set of differential equations with a small parameter ¢ standing before
some derivatives. We will write this set as

x = flx, ) (143)

ey = glx, )
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Sometimes to reduce the system examined to such a form it is necessary to
pass to some new (usually dimensionless) variables or to a new time scale.
For example, if the initial set is of the form

dx
T - e flx, ¥)
dy
a? = g(x,y)

then, assuming that t = ¢ ¢, we obtain

dt T dt

v _

dt dr
and

dx

dy
eqr = 86y
At every fixed value of x we can examine a system of fast motions

dy 1
- glx, y) (144)

when x acts as a parameter. If at ¢t —» oo the solution of eqn. (144) tends to
the steady state y,(x), it is clear that, by decreasing ¢ > 0, it can be obtained
that the solution of eqn. (144) will get into any given small vicinity of y,,(x)
for any prescribed time period T > 0. Certainly, in the general case the
value of ¢ at which it is achieved depends on the initial conditions and
parameter x. If it is possible to obtain an estimate for such ¢ values that
would be valid for a certain region X and the initial conditions Yo, it can be
claimed that at ¢ = 0 the solution of eqns. (143) tends, starting from an
arbitrary low ¢, > 0, to that for the degenerated equations

x = f(x, y4(x))
glx,y) = 0 (145)
Yy o= yu&x)

Naturally, it holds true as long as the solution remains in the area of x and
y for which the above values of ¢ were obtained.

Rigorous conditions at which the solution of the total equation (143) tend
(at ¢ > 0) to that of the degenerated equation (145) are given by the Tik-
honov theorem [39]. Let y = y_.(x), i.e. a continuous and continuously dif-
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ferentiated solution for the equations g(x, y) = 01in a certain area x € X and
¥« (x) is an asymptotically globally stable steady-state solution for the sys-
tem of “fast motions” (144): y(t) — y.(x) at ¢ = co. Then if the solution
x = x(t) of the degenerated system (145) remains in the Xareaat0 < t < T,
then for any ¢, > 0, a solution of the total set (143) [x(¢), y(£)] tends to that
of the degenerated equation (145) [x(2), y«(x(®))] at ¢ — 0 uniformly on the
segment [t,, T']. Functions x(¢) for the total and degenerated system tend to
each other uniformly throughout the segment [0, T'].

Let us emphasize one typical inaccuracy met in the description of the
quasi-stationarity hypothesis for chemical systems. It is suggested that the
rate of changing the amount of intermediate particles (fast sub-system) tends
to or even equals zero. But this is not true since it is not difficult to obtain
an expression for y by differentiating the relationship g(x, y) = 0 and using
an implicit function theorem

dgx,») _ dg .  dg.
& x>

=0

Here in the general case dg/0x and Jg/dy are the matrices of the partial
derivatives 0g;/0x; and 0g;/0y,. Let us assume that all linear laws of conser-
vation have been eliminated from eqn. (143) and the matrix dg/dy is inver-
sible. Then

o~ (3_6’ g,

Y dy ox
and does not depend on ¢ (if ¢ does not enter into the right-hand side). Thus
for the solution of a degenerated system, y appears to be of the same order
as % (as usual it is independent of g).

A source of this mistake is, in particular, the fact that one does not
understand that for the solution of a degenerated system the formula

. 1
y = gg(x, »

is not applicable since quasi-stationarity is only an approximation. With
reasonable application of this approximation the errors for x(¢) and y(f) are
of the order of magnitude as ¢ but in the expression for y containing a large
parameter 1/e, they can appear not to be small. Thus the rate of change of the
concentrations of intermediates is not obligatorily low compared with that
for observed substances. It can be (but need not be) low compared with the
rates of formation and consumption for the intermediates, the difference of
which determine its value.

The introduction of a quasi-stationarity hypothesis was motivated
previously by the fact that concentrations of the intermediates are low and
so are the rates of their variations. First, however, rates are often not low
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and, secondly, generally speaking a low value of the concentrations does not
result in a low value of the rates since everything depends on the ratio of the
rate constants. This example can show how an inaccurate (even erroneous)
approach can lead to a correct and useful result.

Specificity of a concrete system accounts for the source of the appearance
of a small parameter ¢ and for its type. For homogeneous reactions, a small
parameter is usually a ratio of rate constants for various reactions; some
reactions are much faster than the others. For just such a small parameter
Vasiliev et al. [25] distinguished a class of chemical kinetic equations for
which the application of the quasi-stationarity principle is correct (they
considered a closed system).

For catalytic reactions the fast and slow variables usually considered are
the concentrations of surface intermediates on catalysts and gas-phase
reactants, respectively. (In the case of high-vacuum conditions, “a vice versa
quasi-stationarity” is possible, see below.) But in the equations for hetero-
geneous catalytic reactions (119)

z;g = §2?gw (E‘) + Uin-gign _ Uout—gg
VL Ve % Vv

¢ = Y yu,)

a small parameter is not seen at a first glance since S/V need not have a low
value, step rates w, are the same for gas and catalyst and vectors 7y, have
components with values amounting to 0, 1, 2 and (rarely) 3. A key to the
solution of this problem can be as follows. The amount of gas (mole) is
usually much higher than that of intermediates (mole). Therefore having
values for their rates of variation, closer in magnitude, the concentrations
of intermediates get into a small vicinity of the steady state (if it is unique
and stable) more quickly. Assuming that the pressure in CSTR 1is constant
and the law of catalyst conservation is unique, we can write

Y = b, = const.
i
Y = b, = const.
7

(a more complicated case in which there are several laws of conservation,
etc. is considered similarly).
Let us denote

Ny = b, S
]Vt%t = bg Vv
= Ng

£ =
R
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0 = — (146)

e =

—=£ =
At constant b, and b, the rates of steps w, are functions of ¢ and 6 and do
not depend on g

w, = ky T[T 0% — k7 [T (@#b,)™ [T (0:0,)™

The set (119) is rewritten with respect to? as

—8
cE = bis Y yew, (c 0) + UX’;“‘ - ———v°‘it/c
tot (147)
- 1 a8 =8 __
9 = b_s - ’y,sws(c > 9)
Let us go to a new time scale t = (¢/b,)t. We will then have
8
dé¢ N =8 - .
O LG ) R .
dr §
(148)
@ —s = .
&E— = Z sws(c’ 0)
dr §
If at constant S, b,, b,, ¢ - 0 and the system of “fast motions”
T 8 =
f,g = Y 7.w,(c, 0) (149)
di §

has at every fixed ¢ a unique and asymptotically globally stable steady
state, we can apply the Tikhonov theorem and, starting from a certain value
of g, can use a quasi-steady-state approximation.

Generally speaking, ¢ can be tended to zero by various methods without
assuming S, b,, and b, to be constant. In this case, many different asymp-
totes arise. Their dlfference is associated with the fact that, at given @ and
¢, the values of w are independent of b, and b, and the equations for “slow
motions” [the first part of eqn. (148)] contain parameters 1/S and b,/S. For
example, at fixed b,, S and V, b, can be tended to zero: b, — 0. Then the rates
of elementary reactions which are linear with respect to intermediates, will
have an order of smallness ¢. But if the reaction also involves the participa-
tion of % intermediates as initial reactants, the order of smallness for w is
equal to &*. Let &, be the lowest order with respect to intermediates that can
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be met in elementary reactions of the mechanism examined. Then after going
to a new time scale, at ¢ — 0 (on finite intervals) the reactions having orders
with respect to intermediates above k;, can be neglected. The quasi-steady-
state approximation is applicable if v;, = 0 and the “fast” subsystem (149)
accounting only for the elementary reactions whose order with respect to
intermediates is ky, has, for any ¢, a unique and asymptotically globally
stable steady state. These asymptotes correspond to the case of “infinitely
diluted” or “‘greatly contaminated” catalysts (the number of active sites per
unit surface tends to zero) and were studied in detail by Akramov and
Yablonskii [40]. Generally speaking, in this case at ¢ — 0 the reaction
“vanishes”, i.e. all w,(¢) — 0 and ¢ variations are determined by the sub-
stance flow.

Let us consider two cases for ¢ — 0 at which reactions “do not vanish”.
They are the increase of V (b,, b,, and S being constant, N§, » IN;,) and of
b,(V, S and b, being constant). The former case has already been considered,
namely with increasing V (VE; » Ng.) the only changeable parameter is the
coefficient in eqn. (148) at df/dr and the right-hand side remains unchanged.
To consider the latter case b, — o (gas pressure increases), let us use eqn.
(121) relating vy, to v,y

b ,in §_
b

g

U, [27%

out

LuLn
where

bg,in = bg(zlgn) = Zcmz

If the initial reactants for an elementary reaction are k gas molecules (as
usual & = 0 or 1), the reaction rate is w = b*w’(c¥, 0), where w’(c¥,¥) isno
longer explicitly dependent on b,. Dividing elementary reactions into
groups corresponding to various k values and designating the rates for the
kth group as w,,, we obtain

%g = . . =, , 2
" = Z wo,s(cga 6)(yo,s - ‘/o,sc ) + bg z wl,s(cg: 0)
& =

—~g = 2 vy, cign -
wu—mw+@zm+§%m§_ﬂ

k=2

Kl = 3w, @ e + b, Zwls(c s + B Y

di k=0 k=2

At b, — oo, reactions involving the participation of the greatest number
of gas molecules (¢ = k,,,) become predominant. When choosing a new time
scalet’ = b:“‘“r, we can go to the quasi-steady-state approximation ate — 0
if the “fast” subsystem corresponding to the case in which & = &,
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0 = % w50,
k=kyax
has at any fixed c? a unique and global stable steady state. A more com-
prehensive analysis, taking into account possible partial quasi-stationarity,
can be made similarly to the case for b, — 0 (see ref. 40 and also the example
given below).

If S — 0 at constant b, b,, and V(Ng, » N;,) on the right-hand side of the
first equation of eqns. (148) there appears a large parameter 1/S. Generally
speaking, both sets of variables (gas and surface) become “fast” (at v, # 0).
If we return t_gg the initial equations (119), it becomes clear that at S — 0,
variations in ¢ are determined accurately to the terms of the order by the
substance flow

—g —g
Ty — UinCin _ Uout € + 0
c v v ()
or, taking into account eqn. (123), we have
_é‘g - Uinbg,in(zign/bg,in - —Eg/bg)
\%

It is also possible to consider the case S — 0, with &, b,, and V constant and
v;, also tends to zero with v,,/S remaining unchanged. Then the case S — 0
does not differ from V — oo, which was considered first, and they can be
united into one case S/V — 0 (NV§, > N;,) with b,, b, and v,,/S being con-
stant.

The question arises: which of the cases is closest to reality? Let us
consider the physical possibilities for various paths for ¢ — 0.

(@) b, — 0, V, S, and b, are constant. This corresponds to the sequence of
systems (with different ) having the same volume and catalyst surface areas
at the same pressure, but different (decreasing) density of active sites on the
catalyst surface. The latter is obtained with strong poisoning or dilution of
the catalyst.

(b) b, = o, V, S, and b, are constant. This corresponds to the increase of
gas pressure in the system.

() S|V — 0, b, b, and v, /S are constant. This means that, starting from
approximately equal values of N§, and N, we increase the gas volume in
the system or reduce the catalyst surface area by the appropriate changes of
Ui (Usn /S = const.). An apparent barrier for the application of this asymptote
is the fact that, generally speaking, S/V is not small. But it is a dimensional
value and its smallness depends, for example, on the choice of length units.
A real meaning is obtained for the smallness ¢ = N5, /Ng,. If, for example, ¢
is already sufficiently small to apply the quasy-steady-state approximation
with fairly good accuracy, then the value of S/V cannot yet be very small.

Asymptotes at ¢ — 0, corresponding to (a) and (b), are sure to have their
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meaning with high degrees of catalytic poisoning (a) or high gas pressure (b).
But their application suggests that at ¢ — 0 the rate ratios for various
reactions change and some of them practically disappear (see above). It is
not observed for the asymptote (¢) which seems to be the most natural,

It is also possible to consider the case e — 0. Itis symmetnc to the above
cases (a)—(c) accurate to the substitution of ¢® , by and N, by ¢®, b, and N,
respectively. This case corresponds to catalytlc reactions carried out under
high-vacuum conditions. For this case one can observe a “reverse quasi-
stationarity i.e. a fast “adapting” of the concentrations for gaseous sub-
stances ¢® to those of surface substances ¢®

Let us cons1der all asymptotes fora snnple example of catalytic isomeriza-
tionA + Z > AZ 5 BZ 5 B + Z. To reduce the calculations, we assume all
steps to be irreversible.

. S 1 1
Cyr = —Vl:kchcZ(—l + b—cA> - kaCsz—CA] +
g

g
+ bg,invin <CA,in _ E_A_)
bg.in bg

. S 1 1
g = -V[k3CBZ<l - E_CB> + kchcZ—b—cB:' +
g

g
+ vinbg,in <CB,in . EE)

14 by b,
¢z = — Rkicacy + Rycpg
Caz = hicacy — kycyg
Cgy = hyCpy ~ ,kscsz
where
by = cy + cg = const.
and
bs = CZ -+ Caz + Cgy = const.

Using the laws of conservation and applying variables ¢ and 6, we can
write

Cp = 5 V[klbgbsEAez(‘l + ca) — kgb Ogzca] +

Uin b . Cain — Ca
""———g -

0, = — kibycaly + k0
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GBZ = k(1 — 0, — HBZ) — ky0py
cg = 1 — ¢y
Opg = 1 — 04 — Y

where Cs in = Cain/bgin-
Let us consider the case (a): b, > 0, b, S and V = const. v, > 0. Then

= = - - Vin Oy in
ca® = cam + [€a(0) — cam] exp (" —k= t) + 0(e)
' ' Vb,
Surface coverages 0; and 0y, are determined accurate to 0(¢) from linear
equations with variable coefficients

i 1 ) ( ( ) - . ) ( _il‘_ﬂ‘t> GZ
62 = R bgl Cain a ’ bg
+ kSGBZ + 0(8)

QBZ = ky — kyO, — (ky + k)05 + 0(e)

The rate constants and b,, as well as c, ;, and v;,, are assumed to be non-
zero and hence the matrix

I:w kl ngA,in kS }
- kz - (kz + ka)

is non-singular.

As can be seen, at b, — 0 the asymptotes are rather simple, but no quasi-
stationarity exists. As shown above, this is a rather common case for CSTR
when ¢, (0) = ¢, , and hence ¢, () = cay + 0(e).

If we assume that v,, = 0 (the system is closed) we obtain the case con-
sidered previously. Note that then the asymptotes given are not applicable
since a linear part in the equation for ¢, becomes singular and the major
contribution is made by the terms of the order 0(g). For this case (v, = 0), the
quasi-stationarity in the system becomes possible. Proceeding from the
assumption that at b, — 0 we will have v, /b, = const., it is possible to go to
a new time scale 1 = bt and obtain

dc S - - - Uinbgin Cain — €4)
T - bg—V[klbgcAGZ(——l + Ca) — kyOpgc, + 8 bf/bg A]
4o -
b, d—rz = kibgcaly + kybp,
deo
s ‘f = ky — kzez — (Ry + k3)fpz

Since, it was assumed that v;,/b, = const. at b, — 0, the right-hand side of
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the first equation is independent of ¢. At any ¢, > 0 the system of “fast
motions” has a unique asymptotically globally stable steady state:

9 . k2k3
2 Rybyeaks + Ryks + kokibcy
0y — kybgcak,

Robyeaky + kyks + kykibycn

Consequently, starting from some sufficiently low b,, the quasi-steady-
state approximation can be applied after a certain period of time (“boundary
layer”)

dey _ — (S/V)kikykyey
dt  Rybcak, + kyks + Rikib.C
, 1UglalRy 2fv3 3hiUgla (150)
Uin g,in /7 o -
+ —‘“bs ng (CA.m cy)

Since all reactions are of the same order (first) with respect to inter-
mediates, eqn. (150) coincides in its form (accurate to a scale factor) with
that (see below) for the case corresponding asymptote (c) (S/V — 0).

Let us now consider a version of the reverse quasi-stationarity: b, —» o,
S, V, b, and v,, being constant. Here a “fast” subsystem is of the form

1- 18 — _
b—SCA = b—g“‘;[kﬁg@zci — (B b 07 + Ry0ps)ca] +

+ Uin bg, in
b,ub,

At sufficiently high b, it has a unique and asymptotically globally stable
steady state in the range 0 < ¢, < 1 near zero. At b, - oo, this solution
tends to zero like 1/b,. Therefore after passing the boundary layer we obtain,
accurate to the terms of the order 1/b,, ca = 0(e), 0, = 0(e) + ky0py,
Op; = ky(1 — 07 — Ony) — ksbpz + 0(e). At t —> o0, we will have
0z — 1 + 0(e), gz — 0(e), 0,7 — 0(e).

Consequently, in this case, the surface is practically free. Let us consider
the asymptotes at high (b, — o) and low (b, — 0) pressures. If b, — o, the
equation for ¢, will have a small parameter 1/, but not for all summands and
on the right-hand side of the equation for 8, there appears a large parameter
b,. Let us write

(EA,in - ca)

K S _ _ -

Ca = T/klbscAGZ(-l + ca) + (Ub )~ kb Opzcs] +
Uinb in /- -

+ 'Tg' (Cain — €a)
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1
b

1

g aln

GZ = - klegz +
g .

QBZ = kz(l - gz - eBZ) - kaeBz

As seen, a fast variable here must consider only 8,. At any g, and ¢, # 0,
the equation for 0; has a unique and asymptotically globally stable steady-
state solution

0, = ———=
by kicy
Quasi-steady-state equations are of the form
6; = 0(e) *’
Ch = 0@

Oss = 0() + ky ~ (ky + k) Oy

Their physical meaning is as follows. At high gas pressures the surface
contains almost no unoccupied sites since they are rapidly occupied by
adsorbing molecules of A. A value of ¢, is a low since the quantity of gas is
very high compared with that of the catalyst and the adsorption rate is low,
hence 8; is low.

If b, — 0 (low pressures) we can write

S - - S -
bg—vklbsc,xez(cA -1) - T/ksbSQBZcA +

bgCA =

Uin ~ -
+ 7 bg,in (CA,in - CA)
0, = bykicaly + kyby,

O = k(1 ~ 0, — Op;) — kybsy
A fast variable here is c,. At fixed 8, and 8, it is necessary to examine a
system of fast motions. This has the steady states
k3 G_BZ_ Uin bg,in 1 +
2b.k, 0, 28 b, kb6,

+ !Z<1 + ks gg_z__i_vibg,in 0; )Z_Ki&bgﬂ-n EA,in 12
4 beky 0, S b, Rib, S b,

— 1
Cad,s = 3 +

A root (c,); corresponding to a negative sign, always lies on the segment [0,
1] whereas that of (c,), is always above unity. Hence on the segment [0, 1]
there exists a unique steady state for the fast subsystem. Since the segment
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[0, 1] is w-invariant (if, at the initial instant, 0 < ¢, < 1, then this inequality
is also valid for the rest of the period) this steady state is stable and the
Tikhonov theorem can be used. A solution of the quasi-steady-state equa-
tions is of the form

Uin bg, in

e = c‘““(kaembss T vb> + 0,

and 8; and 0g; can be found from the equations

éz = 0(b;) + k30,

and

Opz = ko(l — 6y — Op5) — ksbiy

These equations are linear and can be easily integrated. Their characteristic
valuesare 4, = kyand 4, = —~ k;and the corresponding eigenvectors will be

[+ &y + 17
and
|+ Ry - 1]

Hence a general solution is

K 0(b,) Rk — )+ G| T exp (= Byt
= + + exp (— Ryl) + exp (— Ryt

i O, g 0 1 , P 2 2| 1 p 3

where C, and C, are arbitrary constants.
Finally, let us consider the case S/V — 0, b,, b, and v;,/S being constant.
After going to a new time scale 1 = (S/V)t, we obtain

de - - = Unbgim ~ -
‘d?A = Ribycalz(—1 + c,) — kybyyes + 35 Z’s (Cam — €a)
de -
e-a—?z = —kbycaly + ksbp;
de
Sd_fz = k(1 — 05 ~ Ogz) — ks

Equations of “fast motions” are linear and have a unique steady-state
solution

6 = koks
27 Rybgesks + kyks + kskibgc,
6, — kb, ca ks

Ribgeaks + koks + kokyb

which is stable.
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Ate = S/V — 0, the Tikhonov theorem is applicable, hence starting from
sufficiently small ¢, we can use the quasi-steady-state approximation.

Of great importance is the fact that the quasi-steady-state approximation
is the solution asymptote of the initial system at ¢ — 0, but it is applied at
finite &. To establish a starting value from which this approximation can be
used with the prescribed accuracy is a rather difficult problem in each
particular case.

In the intriguingly entitled publication “The steady-state approximation,
fact or fiction?”’ by Farrow and Edelson [41] presents calculated data on the
unsteady-state behaviour of a complex chemical reaction including 81 steps.
The reaction mixture consists of 50 substances. Numerical calculation
shows a great variety of unsteady-state characteristics of a complex reac-
tion. This variety cannot be interpreted in the narrow framework of the
quasi-steady-state hypothesis. Nevertheless, the authors discriminate bet-
ween the ranges of parameters and time intervals within which this hypothe-
sis 1s confirmed by numerical experiments.

The initial system can be constructed as a series with respect to powers
of & [39]. A zero approximation here is a solution of the degenerated system.
This approach is, however, very rarely used since the increase of accuracy
results in a significant complication of calculations.

In conclusion, it must be noted that the equations to describe the tran-
sient behaviour of heterogeneous catalytic reactions, usually have a small
parameter¢ = NG, /NE,. Here N, = b,S = the number of active sites (mole)
in the system and N§, = b,V = gas quantity (mole). Of most importance is
the solution asymptotes for kinetic equations at N, /N§, — 0, b, b, and vy, /S
being constant. Here we deal with the parameter S/V which is readily
controlled in experiments. The case is different for the majority of the
asymptotes examined. The parameters with respect to which we examine the
asymptotes are difficult for control. For example, we cannot, even in princi-
ple, provide an infinite increase (or decrease) of such a parameter as the
density of active sites, b,. Moreover, this parameter cannot be varied essenti-
ally without radical changes in the physico-chemical properties of the cat-
alyst. Quasi-stationarity can be claimed when these parameters lie in a
definite range which does not depend on the experimental conditions.

To answer the question whether quasi-stationarity can be observed in our
kinetic model at ¢ — 0 it is first necessary to examine a subsystem of fast
motions (“a fast subsystem’) so as to establish if it has a unique and stable
steady-state solution.

5. Uniqueness, multiplicity and stability of steady states
For heterogeneous catalytic reactions a “‘fast subsystem” must, as a rule,

correspond to the conversions of surface substances. Let these substances be
Zi, ... Z,. A mechanism for surface conversions is of the form
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Oy + ..+ 0Ly, 2 Bl + ...+ B2, p=1..,N

This mechanism is obtained after eliminating gas-phase substances from the
global one.
Under the assumption of the law of acting surfaces we obtain

w,@) = w@ -w, @ = k] -k []&
i=1 i=1

Here all concentrations of gaseous substances are suggested to be constant
and are included as co-factors into the rate constants &, .
Kinetic equations take the form

= 3w | (151)

where the vector ;p has the coordinates (y,);, = B, — %,. These equations
resemble egns. (18) and (19) describing chemical conversions in closed sys-
tems at a constant volume. But there is an essential difference. It is possible
that no PDE exist for eqn. (151). A steady-state point for eqn. (151) is not an
obligatory PDE. Such coincidence is an exception rather than a rule.

For eqn. (151) at least one positive law of conservation exists correspond-
ing to the constancy of the total amount (or concentration) of catalyst in the
system. In the simplest case, this law is expressed as b, = X;2; = const.
(where z; is the concentration of Z;).

Further discussion will be devoted largely to the investigation of the
properties for the kinetic models of surface conversions and primarily to the
analysis of the number and stability of solutions for egn. (151).

For this analysis it is of importance to classify mechanisms (their asso-
ciated kinetic models here are the sets of quasi-steady-state equations) to
answer the question of what class of mechanisms possesses a unique and
stable solution for the quasi-steady-state equations, and which one can have
several solutions, i.e. several steady states.

5.1 LINEAR MECHANISMS

The simplest class of catalytic reaction mechanisms are linear ones. This
term was introduced by Temkin (see Chap. 2). Linear mechanisms are those
that contain only elementary Z; = Z;-type steps. Hence every reaction invol-
ves the participation of only one molecule of the intermediate substance.

The theory of linear mechanisms is a sufficiently developed field of cat-
alytic kinetics. Let us present its principal results. In accordance with the
law of acting surfaces, kinetic equations for a linear mechanism are of the
form

= K ' (152)
where K is the square matrix whose diagonal elements are non-positive and
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off-diagonal elements are non-negative. By virtue of the existence of the
linear law of conservation X,z; = const.,, the sums of elements in every
column of the matrix K are equal to zero. The matrix itself is of the form
K = (&, ;) where the k; is the rate constant of reactions Z; — Z;(i # /) and

= ~ Yk ifi =
i=i

The dynamics for eqn. (152) is determined by the eigenvalues of the matrix
K. It can readily be tested that if at the initial instant ¢ = 0 all z; > 0 then,
according to eqn. (152), we also have z; > 0 at ¢t > 0 (it is a special case of
the general statements concerning w-invariance of the orthant for non-nega-
tive vectors relative to chemical kinetic equations; see, for example, ref, 7).
Therefore for eqn. (152) there exist w-invariant simplexes of the type z; > 0,
¥,z; = const. > 0. In accordance with the existence of these simplices, it is
not difficult to obtain the following properties for the eigenvalues of the
matrix K:

(1) real parts of the K eigenvalues are non-positive;

(2) K has no purely imaginary eigenvalues.

Proof is based on simple geometrical considerations. For example, let us
prove property (2). Assume the opposite, then the hyperplane Xz; = const.
contains a two-dimensional plane where the K action reduces to a rotation
around a fixed non-negative point. The intersection of this plane with the
w-invariant simplex is a w-invariant polyhedron that must transform into
itself when rotating by an arbitrary angle, which is impossible.

Properties (1) and (2) also result from the estimates of the eigenvalues
using Gershgorin circles [29]: any eigenvalue A of the matrix K lie on a
complex plane in one of the circles of type |1 — k;| < |k;| or otherwise

[+ Y kil < ) Ry (153)

Jj#i Jj#i

Let us recall that %; is the rate constant of reaction Z; — Z;. The number of
such Gershgorin circles is the same as the number of substances. The above
estimates (1563) do not permit us to judge the fold of a zero eigenvalue, since
every circle contains 0. Matrix K always has a zero eigenvalue with a
non-negative eigenvector. It results, for example, from the existance of w-
mvarlant s1mp1exes Each such simplex for eqn. (152) has a fixed point z,

Kz =0; z, is an eigenvector corresponding to a zero eigenvalue. If
each of the s1mphces z; 2 0,Xz, = const. > 0 contains a unique fixed point,
then the characteristic subspace corresponding to a zero eigenvalue is
one-dimensional (it'is only slightly less evident than it seems at a first glance
and accurately substantiating this statement, a reader can check his know-
ledge of linear algebra). In the opposite case there exists an additional linear
law of conservation, and every simplex decomposes into w-invariant balance
polyhedra of lower dimension.

Let us establish conditions for the existence of additional linear laws of
conservation. Consider one invariant plane P; ,z, = const. > 0. Let there
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exist an additional linear law of conservation L(z) = const. Each equation
L) = C accounts for a hyperplane in P. With two values C = C,, C, this
hyperplane is a reference surface for a w-invariant simplex in P (it is deter-
mined in P by the inequalities z; = 0). Intersections of the hyperplanes
L) = C,, C, with this simplex will be faces designated as S, S,. In par-
ticular, S; and S, can consist of one vertex. They correspond to the sets of
substances whose concentrations on 8, and S, can be zero. These sets are
different, i.e. S; and S, do not intersect. Faces S, and S, are invariant [a law
of conservation is L(z) = (], therefore corresponding substances cannot
transform into any others whose concentrations on S;(or S,) equal zero.
Thus, in a linear system, additional laws of conservation can exist only in
the case where there are at least two groups of substances with the following
properties: (1) the groups have no common substances; (2) substances in each
of these groups cannot transform into any others not entering into their
group. But inside these groups substances can undergo mutual transforma-
tions. Such groups of substances can be called autonomous. The simplest
example of such cases is provided by the scheme of two parallel reactions:
A LB, A 3 C. Here two autonomous groups form substances B and C. An
additional linear law of conservation is of the form (B/k,) — (C/k;) = const. "
But for the reaction A - B — C a similar law is absent.

The presence (or absence) of autonomous groups of substances is easily
checked. We assume they are absent. As usual, a more rigorous condition
compared with the absence of two autonomous groups is fulfilled. It is the
condition of an orientally connected reaction graph. (Here we speak about
graphs of linear mechanisms when nodes are substances and edges are
elementary reactions.)

A graph is called orientally connected (connected digraph) if from any
node we can get to any other along its edges moving in the direction of the
arrows. Oriented connectivity is closely associated with weak reversibility
(see Sect. 5.3) but does not coincide with it.

Let us examine the properties of eqn. (152) under the assumption of
oriented connectivity. Let us fix some w-invariant simplex D,: z, > 0,
3,2, = C > 0. D, has a unique steady state z°. Vector z° is positive since,
due to the connectivity of the reaction digraph, no steady-state points exist
on the boundary D . Indeed, if we assume the opposite (some components z°
are zero), we obtain %; for such 7 and j as z{ # 0 and 27 = 0. But from this
it follows that, moving along the direction of arrows in the graph of the
reaction mechanism, we cannot get from the substances for which z¥ # 0 to
those for which 2} = 0, and this is contrary to oriented connectivity (the
arrows in the reaction graph correspond, naturally, to the elementary reac-
tions with non-zero rate constants).

As for closed systems, D, has a function monotonically decreasing along
the solutions of eqn. (152)

G.GEE) = Yz - 2 | o aw
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Index L is given to Gy, to distinguish it from the Lyapunov function for closed
systems. Strictly speaking, it is not the Lyapunov function, since it cannot
be differentiated on the hyperplanes prescribed by the equations z; = 27.
Therefore, instead of estimating its derivative by virtue of eqn. (152), let us
determine its decrease for a finite period of time 7. Actually, we will find an
ergodicity coefficient [42] for the matrix exp tK

— (k)" exp (= (& + )7)]

nm!

Gzt + 1),2°) < G.&@),z° 1 (155)
where ¢ is the maximum for the sum of the rate constants for elementary
reactions wherein only one of the substances is consumed (the maximum is
taken with respect to substances), m is the maximum length of the shortest
direct path binding pairs of substances in the reaction graph (for each pair
of substances A; and A, the shortest path from A, to A, is chosen and the pair
for which this path is the longest is found; pairs of A; and A, and of A, and
A, are thought to be different, since a directed path from the first to the
second component of the pair is searched for), and & is the lowest non-zero
rate constant.

Estimate (155) can be quite easily improved, but for us its existence is of
itself important. Let us denote

_ (ko)™ exp [— (& + g)1]
nm!

Ao =1 (156)
It is evident that G,(z(t + 1), 2°) < GL(z(®), 2°)A..

It is essential that the estimate of the type (155) talies place and for the
convergence of various trajectories having different z(0) but lying in the
same D (XZz;(0) is the same)

G Yt + 1, 2°¢ + 1) < LG.E'(®), 2}0) (157)

For linear systems with variable rate constants®, the estimate (155) becomes
meaningless since, although it is possible that a fixed point is absent, eqn.
(157) preserves their validity and all trajectories are converging. The only
difference, compared with autonomous systems, is that instead of g and & in
eqn. (156) their upper and lower, respectively, time limits must be taken. It
is natural that sup ¢ < o and inf 2 > 0 must be fulfilled.

Chapter 4 presents several new results for linear mechanisms. Here we
will give a short statement of the fact that a set of quasi-steady-state equa-
tions corresponding to a linear mechanism is that of linear algebraic equa-
tions. This set has a unique solution and therefore the steady state of the
system in which a given reaction takes place following a linear mechanism
(at given balances) is unique and stable.

* Let the reader excuse us for such a word-combination “variable constant”, but we have to use
it.
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For linear sets of differential equations having an w-invariant limited
polyhedron, an eigenvalue for the matrix of the right-hand side can be either
zero or have a negative real part, i.e. after eliminating linear laws of conser-
vation, a steady-state point of these systems becomes asymptotically stable.

If the reaction graph is orientally connected, the phase space of a linear
system (a balance polyhedron) has a metric (154) in which all trajectories of
the system monotonically converge and the distance between them tends to
zero at t — oo. This holds true for both constant and variable coefficients
(rate constants), if in the latter case it is demanded that all rate constants
have upper and positive lower limits (0 < « < k() < f < o, a, f§ = const).

What reactions have linear mechanisms? Primarily these are enzyme
reactions [43, 44]. A typical scheme for enzyme catalysis is the Michaelis—
Menten mechanism: (1) E + A — ES; (2) ES - P + S, where S and P are
the initial substrate and product, respectively, and E and ES are various
forms of enzymes.

5.2 MECHANISMS WITHOUT INTERMEDIATE INTERACTIONS

Linear mechanisms are rather common for heterogeneous catalytic reac-
tions. Examples are given and examined by Cornish-Bowden [43] and Ker-
nevez [44]. Non-linear mechanisms, i.e. those including interactions of
several molecules of the same or different surface substances, however, are
more frequent. For example, a widely spread step of dissociative adsorption
is non-linear.

For us it is important to distinguish between the classes of mechanisms
possessing uniqueness of steady state at any value of the reaction paramet-
ers. It will be shown that one of these classes is that of mechanisms having
no steps consisting of interaction between intermediates. All steps of these
mechanisms are of the typen A — m B, i.e. there is one substance on both the
right and on the left sides. The difference of these mechanisms from linear
mechanisms is that stoichiometric coefficients can be greater than unity.
This difference is, however, not very essential since it does not affect the
form of metric (154) where trajectories converge. To illustrate this, let the
unique linear law of conservation be of the form £z, = const. and the graph
of a linear mechanism obtained from the reaction mechanism involving no
intermediate interactions by substituting all stoichiometric coefficients by 1
is orientally connected (or, which is the same, its bipartite digraph is con-
nected). The kinetic equations will be

z, = — Z dkijdz;? + Z dkjidz}i (158)
i e

where &y, are the rate constants for the reaction dZ; — dZ;. The Jacobian
matrix for eqn. (158) will be written as

% = - (Zd dzkijdzi'i_1> Sy + dzldzkzidzf_l (159)
Jr 3
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Note that matrix (159) coincides with that of the kinetic constants for the
linear mechanism whose rate constant for the reaction A; — A, is

@@ = T dhy”

Each internal point z of the balance polyhedron has a set of constants qy
corresponding to the orientally connected graph of the mechanism, Steady-
state points (and, more extensively, positive semi-trajectories) on the bal-
ance polyhedron boundary are absent since it would contradict the oriented
connectivity of the graph for the initial mechanism (a reader can prove this
as an exercise). Therefore for any ¢ > 0 there exist such é > 0 that, for any
solution of eqn. (158) lying in a given balance polyhedron att = 0, we obtain
z;(t) > d att > 7 and all values of i. Let us consider two solutions for eqn.
(158), z®(®) and z?(®), lying in the same balance polyhedron D .

At every point of D, the Jacobian matrix is that of kinetic constants for
a certain linear mechanism (whose exponent is stochastic). Hence at ¢ > 0
we have GL[Z®), 2?()] < GL[z®(0), 2?(0)] in accordance with the orient-
ed connectivity of the graph for the initial mechanism and the fact that,
starting from an arbitrary t > 0(at? > 1), the inequalities 0 < a < g; E0)
< B[2(0)e D ,] are fulfilled. The latter inequalities have certain « and §
independent of 2(0) and determined only by , D, and a set of constants of the
initial mechanism. In this case

GLEY (), 29%)] — Owhent — co.

When the principal linear law of conservation is of the form
Xm;z; = const., elementary reactions entering into the mechanism without
interactions are (d/m;)A; — (d/m;) A; and the corresponding kinetic equa-
tions and Jacobian matrix will be

= - z (@fm;)kyazi™ + z (dfm;)k;i2]™

N i (160)
Z; d dim;—1
J, = Zi o w4 g dm-ls
il azl _]’Zd mf ljdzl il + o mzml

d/ml—-

Matrix J possesses the properties

(1) its non-diagonal elements are non-negative and

(2) the sum of elements of any column with the coefficients m; is equal to
Zero

02;

2»52“5

As in the previous paragraph where we considered the case m; = 1, we
obtain (1) eigenvalues of J have a non-positive real part and (2) purely
imaginary eigenvalues are absent. Further, for any two solutions y® and
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y® the equations y = J(£)y, where the matrix J(¢) satisfies conditions (1)
and (2) at any ¢, the value of 1 iy y® — 59| does not increase. But if the
condition of oriented connectivity is fulfilled (uniformly with respect to ?),
for any pair of indices i, j (I # j) there will exist such a set of the indices %;,

oo Ry 88y (8, Jip, (), . . oy ;(8) > @ > 0 (x = const.) at all ¢. [It should
be noted that the set k,, ..., k, can also be assumed to be empty if
J;(t) > o > 0.] Then for any two solutions ¥y () and y®(¢) with the same
value for the law of conservation, Tm;y" = Zm;y®, we will obtain the dis-
tance T, m, |y @) — yP@)| -» 0att —» .

As in the case m; = 1, in accordance with the above properties of Jaco-
bian matrix (160), it follows that, under the assumption of the oriented
connectivity for the reaction mechanism involving no intermediate interac-
tions, the time shift is the phase space (or balance polyhedron) compression
in the metric

pEP,ZD) = Y myld — 22| (161)
i=1
Any two solutions lying in the same balance polyhedron converge in the
metric (161) and p(z®(2), 2 (t)) — 0 att — 0. It results, in particular, in the -
existence, uniqueness and asymptotic stability (in the large) of the steady
state in the balance polyhedron. This was confirmed by Vol'pert et al. [45]
and partly and simultaneously by Bykov et al. [46-48]. (Note that all the
considerations given also hold for the n A — Zm;B;- type reaction systems.)
Let us consider a structure for the multitude of steady states for eqns,
(158) or (160) in the positive orthant. For linear systems z = Kz it forms
either a ray (in the case of the unique linear law of conservation) emerging
from zero, or a cone formed at the linear subspace ker K intersection with
the orthant. The structure for the multitude of steady states for the systems
involving no intermediate interactions is also rather simple. Let us consider
the case of only one linear law of conservation £m;z; = ¢ = const. and
examine the dependence of steady-state values 2 on ¢. Using eqn. (160), we
obtain

JG st) dz®
(162)

dz5
Zde =1

Let us assume the connectivity of the reaction mechanism digraph. It then
follows from eqn. (162) that

d,.,st
dc

Consequently, 2 monotonically depends on the balance ¢ = Zm,;z;. Con-
dition (163) can be rewritten as

> 0 ’ (163)
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dz.?t
— >0 (1639
dz,
where 2z, is some chosen concentration (degree of coverage). The absence of
interaction steps, e.g. of the type

ol + oz, + .0~ BZ, + L (o, 0 # 0) (164)

is a sufficient (under oriented connectivity) but not a necessary condition for
the validity of eqn. (163). Inequalities (163) can also be fulfilled for some
mechanisms involving interaction steps. They can be applied to prove uni-
queness of a positive steady state. For this purpose, in addition to egn. (163)
it is necessary to prove that a positive steady state is unique for at least one
value of ¢. As usual, it is simpler to show for ¢ values that are close to zero.
In some cases it is possible to find explicit expressions for z£*(z,) functions.
If this function is unambiguous, the fulfilment of conditions (163) is sufficient
for a positive steady state to be unique. Moreover, in this case it suffices that
Tm;dz/dz, > 0.

Let us give an example.

Example 7. Hydrogen oxidation on platinum. In accordance with the
range of parametric variations, this reaction can follow two different me-
chanisms [49].

1O, + 2Z - 270
O H, + 2Z =2 2ZH
(320 + ZH — ZOH + Z (A)
@ H, + 2Z0H - 27 + 2H,0
G H, + Z0 - Z + H,0
or
1O, +2Z - 220
@ H, + 2Z « 2ZH
3720 + ZH - ZOH + Z (B)
4 ZH + ZOH - 27Z + H,0
GyH, + Z0 - Z + H,0

Designating the concentrations of Z, ZO, ZH, and ZOH by z,, z,, z,, and
2, and assuming that the concentrations of substances in the gas phase of O,
and H, enter as co-factors into the rate constants of the appropriate reac-
tions, we can write a kinetic model for mechanism (A) as

zy = 2kZ} — Ryzyzy — kg2,
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2, 2ky2E — 2k_,2% — kyzy2,

2, = kyzyzy — 2k

where 2, + 2, + 23 + 2z, = const. Here steady-state concentrations z; are
expressed by the equations (2, = 2, = 2, = 0)

. [2tkea + k)]
! 2k,

2k, k_, 23
kyzg(k, — ky) + kyks

_ k32, 23>1/2
5 ( ok,
In this case no boundary steady states exist, hence we will have only positive
solutions and ky ks + ky(k, — k;)z; > 0. Under this condition it can easily be
shown that dz, /dz;, dz,/dz;, and dz,/dz; are positive, i.e. the internal steady
state is unique. In this case condition (163’) is fulfilled and despite the
mechanism involving an interaction step between various intermediates, the .

kinetic model has only one positive steady-state solution.
Mechanism (B) corresponds to the kinetic model

29

2y = 2kZE — Ryzpzy — Ryzy

2ky2} — 2h_y22 — Ryzyzy — ky232,

ER
- 2, = kyzzy — kyzyz,

where, as before, 2, + 2z, + z; + z, = const. Steady-state values for its
variables can be written from the equations 2, = z; = 2z, = 0

E_,(b + czs)zg]”2

_ )
2 [ak4z3 + 2, (b T <z,)

kilazs/(b + cz)]

az

2 =
¢ b + cz

where a = 2k k_,, b = k,[ksk, ks, and ¢ = kk, — 2k, k,. For the case in
which, along with the boundary steady state(z; = 2z, = z; = 0,2z, = const.),
a positive steady state also exists, it is necessary that b + cz; > 0. Under
this condition dz;/dz;, dz,/dz,, and dz,/dz, are positive. Hence though
mechanism (B) involves an interaction step between various intermediates,
it can have only an unique internal steady state.
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For mechanisms having interaction steps between various intermediates
(Z; + Z; - ), it is also possible that the condition of a monotony (163") is not
fulfilled. (Fulfilment of this condition can be thought to be an exception
rather than a rule.) Simple mechanisms of this type tolerating the existence
of several steady states will be examined comprehensively in Chap. 5.

Let us emphasize the most essential conclusion that can be drawn in this
section: a sufficient condition for the uniqueness of steady states in catalytic
reactions is the absence of interaction steps for various intermediates in the
detailed reaction mechanisms. Their presence is a necessary condition for
the multiplicity of steady-state values for the catalytic reaction rates. This
principal statement possesses an ‘evident discrimination property. If some
experiment is characterized by the multiplicity of steady states and its
interpretation suggests a law of acting surfaces, the description of this
experiment implies a detailed mechanism that must contain interaction
steps of various intermediates.

5.3 QUASI-THERMODYNAMIC HORN AND JACKSON SYSTEMS

Studies of linear systems and systems without “intermediate interac-
tions” show that a positive steady state is unique and stable not only in the
“thermodynamic” case (closed systems). Horn and Jackson [50] suggested
one more class of chemical kinetic equations possessing ‘“‘quasi-ther-
modynamic” properties, implying that a positive steady state is unique and
stable in a reaction polyhedron and there exist a global (throughout a given
polyhedron) Lyapunov function. This class contains equations for closed
systems, linear mechanisms, and intersects with a class of equations for “no
intermediate interactions’ reactions, but does not exhaust it. Let us describe
the Horn and Jackson approach.

" Let the reaction mechanism be prescribed in the form

U AL + .. ag A, 2 BaAL+ L+ BLA, (165)

A combination of symbols A; with non-negative integer coefficients in the
right- and left-hand sides of the stoichiometric equations for reaction steps
will be called complexes. Designating each complex by one letter y, the
reaction mechanism can be represented as

Ye & Y; (166)

for certain pairs y,, y;. A list of reactions (166) can also be represented as a
graph. For example, for the oxidation of CO on Pt following the Eley—Rideal
(impact) mechanism we can write (considering only intermediates and omit-
ting the symbols for the gas-phase components)

[2Z] = [2Z0] <yl = y2>
[ZO] — [Z2]

For the Langmuir-Hinshelwood (adsorption) mechanism we will have

Vs > Vs
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[ZO + ZCO] — [2Z] = [2Z0] (Ys -y 2 yz>

{Z0] - [Z] = [ZCO] Vs = Y« 2 ;5

For each pair of y; and y, complexes, w;, represents the rate of reactions
¥; = ¥.(and wy;is similarly the rate of y, — y; or, which is the same, y; «< y,).

A new variable is then introduced which is the rate of “concentration”
variation for a given complex. It is determined as the difference of two sums.
Rates of all the reactions to “form” this complex are added and from the sum
obtained we will subtract that of therates for all the reactions to ‘‘consume”
this complex

g = zk: wy — ;w,-k (167)

We use quotations for the words complex “concentration”, “form”, and
“consume” since they have no direct physical meaning. The use, by analogy
with the Horn—Jackson concept of a “complex” could be attempted of a term
“activated complex” from the theory of absolute rates, but after some specu-
lation we decided that this analogy would not be very reasonable. Values of
g; can be interpreted if they are associated with the rates of concentration
variations for reactants, namely by giving a designation a; to the coefficient
that the ith substance has when it enters the jth complex. We then obtain

c; = Zgjaij (168)
5 .

[We examine conversions only of surface compounds or the reaction at a
constant volume; in other cases the analog (168) cannot be written either
(see Sect. 1).]

Such a composition of the mixture for which all g; = 0,i.e. therate of each
complex “formation” is equal to that of its “consumption”, is called a point
of complex balance (PCB).

The first of the principal Horn and Jackson results is as follows. If the
gystem obeys the law of mass action (or acting surfaces), then if it has a
positive PCB it demonstrates a “‘quasi-thermodynamic” behaviour, i.e. its
positive steady state is unique and stable and a global Lyapunov function
exists.

It is evident that each PDE (w,; = w;,) is PCB. The opposite is incorrect.
For example, though any steady-state point of the linear mechanism is a PCB
(complexes are substances, Z, = y,), the principle of detailed equilibrium for
it is not always valid (if the system is open).

A second result consists in the determination of the class of mechanisms
which always have a positive PCB. For its description, let us consider a
graph of complex conversions. It nodes are y; and its edges connect those y,
and y, for which a list of steps has either y; — y,ory, — y;reactions. In case
both reactions take place (y; # y,), the two arrows indicate different reac-
tion directions. A graph is called connected if from any of its nodes we can
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get into any other by moving along its edges (the orientation of edges does
not matter since we can move in both the forward and backward direction).
If the graph is unconnected it breaks into several connected fragments
(components). Let us denote the number of complexes as M, that of connect-
ed graph components for their conversions as ! and the number of linearly
independent reactions (their stoichiometric vectors) as S. A first Horn and
Jackson condition for quasi-thermodynamic behaviour is

M-1=28 (169)

The number of complexes minus that of connected components of the
graph for their conversions equals the number of linearly independent
reactions (stoichiometric vectors). A second Horn and Jackson condition for
quasi-thermodynamic behaviour is the weak reversibility of the graph for
complex conversions. This graph is called weakly reversible if any of its
connected components contain a route to get from any node to any other
moving in the direction of its arrows. For example, the scheme

N—rY2

\ / (170)

y3

does not seem to be weakly reversible since it is impossible to get from y, to
v, and y, and from y, to y; moving in the direction of the arrows. '
Horn and Jackson [50], M. Feinberg [51], Horn [52] and Feinberg and Horn
[63] showed that if the scheme of complex conversions is weakly reversible
and (most essential) the conditions (169) is fulfilled, the system always has
a PCB and hence demonstrates “quasi-thermodynamic” behaviour. The
weak reversibility condition seems to be less essential since, for its fulfil-
ment, it is sufficient to suggest that all steps are reversible assuming, if
necessary, the rate constant for a reversible step to be sufficiently low. Hence
the main difficulty for the application of the results of Horn, Jackson and
Feinberg to a concrete reaction system can be the impossibility of fulfilling
eqn. (169), which cannot be overcome by small additions to the equations.
Let us check these conditions for the oxidation of CO on Pt. The Eley-
Rideal (impact) mechanism has four complexes, M = 4, two connected com-
ponents [2Z] = [2Z0], [ZO] — [Z], and two stoichiometric vectors

-2 1

[: Z:I, i: :!and they are linearly dependent (proportional), i.e. S = 1,
-1

M—-1=4—-2= 2> 1 In addition, for this mechanism the condition of

weak reversibility is not fulfilled. But the mechanism does not involve

interaction steps of various intermediates. Hence, though two Horn and

Jackson conditions are not fulfilled, a steady state is unique and stable.
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For the Langmuir-Hinshelwood mechanism, M = 6, [ = 2, S = 2, and
eqn. (169) is not fulfilled. It is also impossible to fulfil the condition of weak
reversibility.

An interesting example for which eqn. (169) is valid, but the mechanism
has an interaction step of various intermediates, is ethylene hydrogenation
on nickel, i.e. the Twigg mechanism [54]

: H :
[2Ni] q—2n% _p [CoHy-2NiT

& //:,2 (71)
CoHg

CCoHsNi+Ni-H1

In this case, M = 3, [ = 1, and S = 3 but among the stoichiometric
vectors only two are linearly independent. Thus 3 — 1 = 2 and the first
Horn and Jackson condition is fulfilled. Also fulfilled is the second con-
dition, i.e. weak reversibility of the graph for complex conversions. Since
both conditions are fulfilled, a steady state is unique and stable despite the
mechanism having two interaction steps for various intermediates.

Hence, in addition to the systems without intermediate interactions, the
conditions for the existence of a PCB account for one more class of mechan-
isms that always have an unique and stable steady state. In conclusion, let
us emphasize that, on the basis of the Rozonoer approach [55, 56}, Orlov has
recently extended the Horn and Jackson results to the non-ideal systems of
a rather general type having a PCB [57, 58].

5.4 CRITERION FOR UNIQUENESS AND MULTIPLICITY ASSOCIATED WITH THE
MECHANISM STRUCTURE

There is no doubt that studies for the establishment of new classes of
mechanisms possessing an unique and stable steady state are essential and
promising. On the other hand, it is of interest to construct a criterion for
uniqueness and multiplicity that would permit us to analyze any reaction
mechanism. An important contribution here has been made by Ivanova [5].
Using the Clark approach [59], she has formulated sufficiently general con-
ditions for the uniqueness of steady states in a balance polyhedron in terms
of the graph theory. In accordance with ref. 5 we will present a brief sum-
mary of these results. As before, we proceed from the validity of the law of
mass action and its analog, the law of acting surfaces. Let us also assume
that a linear law of conservation is unique (the law of conservation of the
amount of catalyst).

In accordance with ref. 5, a complex reaction is described by a so-called
bipartite graph of its mechanisms having vertices (points) of two types. Type
Z corresponds to substances Z; and type R is ascribed to the reaction
R,(G=12..,mp=1..,N) Edges (R,, Z;) and (Z;, R,) have weights
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B, and «;,, respectively. If the weight equals zero, this edge is absent. Initial
information and simple examples of bipartite graphs have been given above
(see Sect. 1.3).

Ivanova [5] specifies the following graph elements: a segment [Z;, R,]; a
positive path [Z;, R,, Z;]" formed by two edges (Z;, R,) and (R,, Z;) oriented
in the same direction from Z; to Z;; a negative path [Z;, R, Z;]~ formed by two
edges (Z;, R,) and (Z;, R,) oriented from Z; and Z; to R,. The positive path
corresponds to the formation of Z; from Z; due to the reaction R,, whereas the
negative one accounts for the interaction between Z; and Z; in the reaction
R,.Thepaths[Z;,R,,Z;]” and [Z;, R,, Z;]” are considered to be different since
their orientations are from Z; to Z; and from Z; to Z;, respectively.

In Sect. 1.3 we described cycles of two types, oriented and non-oriented.
The oriented cycle can be passed by if we move in the direction of the arrows.
For a cycle of a general type it can be different since it is a sequence of the
vertices Z,, . . ., Z, where the pairs of vertices Z;and Z;.,(i = 1,...,k—1)and
also of Z, and Z, are connected by edges. As usual, we will consider simple
cycles with no edge and no Z vertex appearing twice.

To study the problem concerning the uniqueness and multiplicity of
steady states it is necessary to consider one more type of cycle that is more
general compared with oriented cycles. We will call them Clark (or Clark—
Ivanova) cycles.

A Clark-Ivanova cycle is a closed sequence of paths where each Z vertex
of the cycle is the path origin only once. For brevity, the cycle consisting of
the paths [Z; , R, , 2,1, [Z;,, Ry, Z ), . - - [Z,, Ry, Z;] will be designated as C

0 ig» ‘Vpy

ZiZiy. .. 2
(Rll ? '>. The Clark-Ivanova cycle (in what follows, simply the
Py RPZ’ AR a4

cycle) is called even (odd) if it contains the even (odd) number of negative
paths. Let us recall that a negative path corresponds to the interaction of
various substances. Therefore an even (odd) cycle must contain the even
(odd) number of interaction steps for various substances. A union of the
arbitrary number of segments and cycles in which each Z vertex is the origin
for only one segment or path is called a subgraph. The number of subgraph
Z vertices is called its order. Below we consider the multitude of all sub-
graphs containing the chosen set of vertices Z,, Z;,, . . ., Z; and R, , R, , . . .,
R,,. This multitude, T, is divided into two non-intersecting multitudes T+
and I'” where T'™ is the multitude of all subgraphs from I" containing the
arbitrary number of segments and the odd number of even cycles, and
I'* = T'/T"" is the remaining subgraphs. Then the following numerical func-
tions for the subgraph elements are introduced.

B,(z) = w,(0w,/0z)
for the segment [Z;, R, ],
Bf{p(z) = ﬁjp(awp/azi)
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for the positive path [Z;, R,, Z;]*, and
BY (2) = - 0,(0w,/0z)

2y w2y
for the negative path [Z;, R, Z;]”. A value for the cycle C ( ' > is
A
called the product of its constituent paths taken with a negative sign. A
value for the subgraph will be the product of the values of all its segments
and cycles. A coeflicient of the subgraph G is expressed as

H ®ip H %ip Ojp H %ip ﬁjp (172)
[1eG [1-eG
Here products are taken respectlvely along all segments [ ] = [Z;, R,],
positive [ ]* = [Z;, R,, Z;]* and negative [ ]© = [Z;, R,, Z;]™ paths entering
in the subgraph G. Let F = ||f;|| be the Jacobian matrix for eqn. (151), i.e.

N w,
. o= e} 1
fi ag,l Yis oz, (173)

and P(1) = (—1)"det|F — A E|. Clark [59] showed that a coefficient of 1* for
the polynomial P(J) is equal to the sum of the values of the possible sub-
graphs of the (n — k) graph order corresponding to the reaction mechanism.
In accordance with this postulate, the following condition, which is suffi-
cient for the uniqueness of the positive steady-state point in egn. (151), was
obtained [5]: if there are no boundary steady-state points (it can be checked),
then a positive steady-state point is unique in the case when, for any totality

r of the vertices Z; , . . ., Z; and any totality r of the vertices R,, .. ., R,
(r is the rank of the matrlx [y,p]), the inequality
> Ko > ¥ Ko (174)
Gell+ G"EI"—

is fulfilled.

A proof for this statement is constructed in accordance with the fact that
the latter inequality accounts for the sign of the coefficient in the polynomial
P(A) at "7, which in turn is associated with the index of a steady-state point
for the vector field (151) [60]. If this coefficient is positive at any point of the
positive orthant R} : 2,2, > 0,i = 1, 2,. . ., n, then the steady-state point is
unique.

If the boundary of the simplex D = {z: z; = 0,Zm;2; = 1} has one attract-
ing steady-state point and an arbitrary number of unstable points, then if
eqn. (174) is fulfilled, D has no internal steady-state points of the system,
since a small deformation of the D boundary can provide a region Q to which
a theorem about the relation between the field rotation and the sum of
indices for internal steady-state points in Q is-applied [60].

Ivanova also extended the above principal statement to homogeneous
flow systems (a homogeneous CSTR). In addition, on the basis of the inequal-
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ity (174) she formulated: (1) the conditions to distinguish an area of paramet-
ers for which a steady state is not unique and (2) those for the existence of
an area of parameters for which a positive steady state is unique and
unstable.

We apply these conditions to distinguish simple catalytic mechanisms
ensuring self-oscillations of reaction rates (see Chap. 5).

Ivanova and Tarnopolskii have realized a computation of this algorithm,
thus making it convenient and applicable for composite reactions [61]. Let
us give some examples of this algorithm application.

We will consider simple examples, i.e. the Eley-Rideal and Langmuir—
Hinshelwood mechanisms for CO oxidation on Pt. Bipartite graphs corres-
ponding to these mechanisms are represented in Fig. 3. In accordance with
the general scheme, let us list segments, paths and cycles of these graphs.

For the Eley-Rideal mechanism [Fig. 3(a)] we have the segments
[Pt > wil [PtO 23 wil, [PtO —» w,], and the paths [Pt 3> w; — PtO]*,
[PtO > w; — Pt]*, [PtO — w, — Pt]*. Here there are only positive paths.
Negative paths accounting for the interaction steps for various inter-
mediates are absent. The numerals above the arrows symbolize stoi-
chiometric coefficients.

Pt 2wt Pt 2, w3

I A

W1_<—2— PtO wo <€— PtO
(1) (2)

Cycles in this case are only even (the number of negative paths equals zero).
Here the graph contains only second-order cycles. The rank of the stoi-
chiometric matrix is 7 = 1. First-order cycles do not exist here, hence in eqn.
(174) the equality is fulfilled identically, i.e. a steady state is always unique.

For the Langmmr—Hmshelwood mechanism [Fig. 3(b)] we have the seg-
ments [Pt > w;], [Pt > w;i], [PtCO — w,], [PtCO — w; 1, [PtO > wy],
[PtO — w,],

and the paths [Pt > w;i 5 PtO]*, [Pt ; wy — PtCOJ*, [PtCO = wy -
Pt}*, [PtO 5 w; 2 Pt]*, [PtCO — w, > Pt]*, [PtO — w, > Pt]*, [PtCO
- wy; - PtO]~, [PtO — w; —» PtCO]".

Here the rank of the stoichiometric matrix is r = 2. Therefore we will be
interested in second-order cycles [Fig. 3(b)]

Pt—_>w1

2T 12

w1~ €>— PtO
(1)
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or, in short

Pt, PtO
G
wi, wr
Here passing of the cycle corresponds to the arrows

&G

then
(Pt, PtCO) (Pt, Pto> <Pt, PtCO)
G, G o G
w;s w{ w1+ ’ Wws w2+ ’ Wy

Here all second-order cycles are even. As shown in ref. 5, one of the reasons
for the non-uniqueness of steady state [violation of condition (174)] can be
the presence of a cycle composed by the positive paths for which

B 2 _ . In our case this cycle (branching cycle) will be the cycle
C3 for Whlch ,321 ,813 =2 x 2 =4, 0 03 =2 x 1= 2, and the necessary
condition for the uniqueness of a steady state is not fulfilled. A comprehen-’
sive numerical analysis of several steady states for a given system will be
performed in Chap. 5.

Let us give one more example considered in ref. 5. In the scheme of
hydrogen reactions with oxygen for the totality of Z vertices corresponding

to the substance OH, H, and O and of R vertices corresponding to the
reactions

OH +H, - H+ H,O
H+ 0, - OH+ O
O+H, - OH+ H
the third-order subgraphs belonging to I'™ consist of the third-order cycle
OH, H, O
C
Wy, Wy, Ws
and the unions of the second-order cycles and segments
OH, H H, O
C U [0, ws], C UIOH, w], Y Ks = 3.
wy, Wy - Wy, Wy Ger-

The multitude I'* consists of the one subgraph being a wirion of the segments
[OH, w,]{J [H, w,] {J [0, w5}, and = . Ko = 1. In this case inequality (174)
is not fulfilled since there are several cycles passing through the same
reactions and substances from the same totality. The approach described is
sure to merit a more comprehensive description with the greater number of
examples.

References pp. 183-184
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5.5 SOME CONCLUSIONS

A question arises: in what cases is a unique and asymptotically stable
steady state realized?

(1) Closed systems. Here a rest point is always a PDE wherein the rate of
every direct reaction is equal to that of the reverse reaction.

(2) Open systems without intermediate interactions, i.e. those having no
PDE but the mechanisms do not involve interactions between various inter-
mediates. .

(3) Open systems with PCB. An efficient means to establish whether this
point exists is to check the equality (169): M — I = S and a weak reversibil-
ity (these are sufficient but, generally speaking, not necessary conditions).

Systems (1) enter into class 3 (a PDE point is a PCB). Systems with linear
reaction mechanisms belong to both class (2) and class (3) but these classes
do not overlap since there are systems without intermediate interactions
that do not satisfy the principle of complex balance (e.g. the Eley-Rideal
mechanism for CO oxidation on platinum metal). On the other hand, there
exist reaction mechanisms containing steps of “intermediate interactions”
but at the same time always having a PCB (e.g. the Twigg mechanism for
ethylene hydrogenation on nickel).

(4) On the basis of the structure for a bipartite graph of the reaction
mechanism, it is possible to formulate a sufficient condition (174) for the
uniqueness of a steady state. Applying it to concrete reactions, it is possible
to establish the parametric areas for which either a unique steady state
exists or there is a multiplicity of such states.

Let us emphasize the following important circumstance. In the introduc-
tion we have already spoken about a physico-chemical sense of the con-
ditions obtained for the multiplicity of steady states in the kinetic region.
Now we will only stress that for linear mechanisms the steady state is,
apparently, unique. If we deal with non-linear mechanisms and kinetic
models (rather typical for heterogeneous catalysis), it can be expected that
the solution will not be unique. For non-isothermal systems it is a well-
known effect [62]. A new fact is the experimental and theoretical establish-
ment of such effects in a purely kinetic region. This behaviour can be
observed for an open chemical system that is far from being in equilibrium
(a model of such an autocatalytic system was constructed by Zeldovich in
1941 [63]). Multiplicity of steady states is due to model non-linearity. In
general it is the non-linearity that is responsible for the complex dynamic
behaviour of an open chemical system. Frank-Kamenetskii, the author of the
well-known book Diffusion and Heat Transfer in Chemical Kinetics, differed
with Nalimov who believed that critical effects are possible only under
fundamental changes in the reaction mechanism. Frank-Kamenetskii’s opi-
nion was that jumpwise transitions from one regime to the other take place
under critical conditions that are not associated with variations in the
mechanism of the chemical reaction itself but are caused only by its non-
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linear peculiarities. Recent studies have confirmed his viewpoint [64]. All
the results presented are the conditions to determine the areas with unique
or multiple positive (either stable or unstable) solutions but so far no general
results have been obtained that would permit us to judge the number of
positive solutions in the case when there are several. This problem can be
solved only for concrete cases, i.e. kinetic models of comparatively small
dimension.
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