
Ind. Eng. Chem. Fundam. 1985, 24, 153-170 153 

Structure of Complex Catalytic Reactions: Thermodynamic 
Constraints in Kinetic Modeling and Catalyst Evaluation 

Reuel Shlnnar’ and Cheng A. Feng 

Department of Chemlcal Englneeflng, The Cky College of New York, The City Unlversky of New York, 
New Ywk, New York 10031 

The paper examlnes the thermodynamic constraints on chemical reaction trajectories. It shows how thermodynamic 
concepts c a n  be used to organize and analyze the results of kinetic studies in complex reaction systems where 
several reactions can occur simultaneously. It defines rigorous criteria for setting up a set of stoichiometric relations 
to obtain an empirical kinetic model for the system. This c a n  be done without any kinetic calculations by inspecting 
the measured trajectories in compositlon space. The paper also deflnes the concept of coupling between overall 
ostensible reactions and explains the thermodynamic advantages by using shape-selectlve catalysts. The concept 
of thermodynamic constraint is defined, and it is shown that the mechanism of the kinetic reactions has ther- 
modynamic consequences far more restrictive than the Second Law itself. The results should be useful in the 
modeling of complex reactions systems as well as  in the testing and evaluation of new catalysts. 

I. Introduction 
The Second Law of thermodynamics imposes many 

limits on the performance of chemical reactors. Strictly 
speaking, the only thermodynamic constraint on any re- 
actor that is a direct result of the law is that the overall 
feee energy change is negative definite. However, available 
catalysts impose much stronger constraints on the reach- 
able set of compositions or composition spaces. The free 
energy must not only decrease for the total system, but 
it must also decrease separately for each kinetically in- 
dependent ostensible reaction. Despite great interest in 
understanding the constraints that these considerations 
place on reactor performance and design, the subject re- 
mains only partly solved (Krambeck, 1970; Wei and Prater, 
1962; Aris, 1969; Sellers, 1967; Bowen, 1968). In this paper 
a systematic approach is presented which enables one to 
apply thermodynamic constraints to reactor design and 
performance. 

The thermodynamic constraints can be classed into 
three types: (1) thermodynamic constraints which are the 
results of stoichiometric relations including enthalpy and 
free energy relations; these are defined as “hard” con- 
straints; (2) thermodynamic consequences of the kinetic 
properties of available catalysts; (3) thermodynamic con- 
sequences of design decisions. 

An example of a thermodynamic constraint which is a 
consequence of a design decision is the limited thermal 
efficiency of a fuel-burning, steam-fired power plant. The 
limited efficiency is not a direct result of the second law 
but a result of the design decision to limit the maxlmum 
temperature of the superheated steam. An example of a 
thermodynamic constraint which is a consequence of 
available technology is the production of methanol by the 
reaction 

CO + 2Hz CH30H (1) 
Since there is no available catalyst that promotes the re- 
action at room temperature, the reactor is forced to operate 
at a higher temperature, commonly 520 OF. The constraint 
is dictated by the properties of available catalysts and by 
other design considerations. 

In each of the examples, the constraints are not a direct 
result of the second law. However, we can use the second 
law to analyze the consequences of these imposed con- 
straints. The advantage of using thermodynamic relations 
instead of rate equations to analyze chemical reactions is 
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that we do not need exact kinetic data. It is sufficient to 
know or be akle to estimate the relative magnitudes of the 
reaction rates and the range of temperatures over which 
these relations apply. 

The purpose of this article is to define such a thermo- 
dynamic approach and to demonstrate its applicability to 
a wide set of problems. This approach can also be used 
to obtain performance bounds for complex multiple re- 
actions in catalytic reactor design. As a result it can 
provide guidelines for rational process development. 

The paper is divided into several parts. Section I1 
discusses principles of modeling chemical reactors and 
defines some of the terminology which will be used later. 
In section I11 this approach will be outlined by discussion 
of fmt-order systems similar to the ones considered by Wei 
and Prater (1962). Sections IV and V extend the analysis 
to nonlinear systems and show how the set of reachable 
composition depends on the mechanism and upon the 
intermediates of the individual chemical reactions. Section 
VI shows how this can be used to define rigorously a set 
of overall chemical reactions, each of which is both ther- 
modynamically and kinetically independent of the other 
reactions, and to test their consistency with experimental 
data. In section VI1 we discuss the simple nonlinear ex- 
ample of steam gasification of carbon. Finally, the last part 
of this paper deals with the effect of transport properties 
on thermodynamic constraints. We will discuss shape 
selective catalysis and evaluate the impact of shape se- 
lectivity. It will be shc m that introducing shape selectivity 
is equivalent to introducing additional kinetic pathways 
and can achieve results that are similar to those obtained 
by introducing new reactions (or in other words, new 
catalytic functions to a catalyst surface). 

11. Definition of the Problem and Overview of the 
Met hod 

In this section we address some of the problems en- 
countered in modeling a complex reaction. In most cases, 
one does not model molecular events. Rather, one tries 
to describe complex events involving intermediates by a 
simplified overall model. To model a chemical reactor, we 
do not need to know all the individual steps of each re- 
action. A phenomenological approach using overall reac- 
tions is often adequate unless one is dealing with dynamic 
processes which are outside the scope of this paper. I t  is 
fortunate that one can lump intermediate steps together 
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because often these steps are unknown and may be hard 
to elucidate. The question, however, remains: how does 
one set up a set of overall phenomenological reactions if 
several reactions occur simultaneously which cannot be 
studied independently? If one can identify all the com- 
pounds involved (neglecting free radicals and all inter- 
mediates which are not present in measurable concentra- 
tions in the bulk phase), one can always set up a set of 
independent chemical reactions describing all the changes 
(Aris, 1969). These independent reactions correspond to 
a set of vectors in species space which are linearly inde- 
pendent and span the vector space of all the observed 
chemical changes. 

Aris (1969) has shown that if there are N species and 
E independent element balances, the number of stoichio- 
metrically independent reactions S is 
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S = N - E  
Each of these sets of stoichiometrically independent 

reactions can describe all stoichiometric changes and is 
useful in computing heat and free energy balances and 
allows us to compute global equilibrium. However, these 
sets of linear independent stoichiometric relations are not 
unique, nor are they necessarily suitable for deriving ki- 
netic rate equations. They are also not equivalent when 
one proposes phenomenological models to describe this 
system. One can realize this by just looking a t  a very 
simple system, such as the isomerization of three xylene 
components. Stoichiometrically, there are only two linearly 
independent reactions. However, intuitively we realize that 
at  least three overall reaction expressions are needed in 
order to model the system. This result can be obtained 
without using any time-dependent dynamic relations if one 
analyzes the changes in composition space or trajectories. 
We define a trajectory as a set of compositions that occur, 
as a result of reactions, as a function of time. Such a set 
of compositions or trajectory has properties independent 
of time and it is these properties on which this paper will 
focus. The fact that some of the properties of the mea- 
sured trajectory are time independent is very crucial to the 
approach, as it allows us to use thermodynamic relations. 
For example, such a trajectory must have the property that 
free energy decreases along it. We will postulate that if 
such a trajectory is the result of several reactions occurring 
simultaneously each reaction contributing to the change 
in composition must have a decreasing free energy. I t  is 
this condition which prevents one from describing the 
changes in the xylene isomerization system by two reac- 
tions, even if one is not concerned about their dynamic 
form. 

The paper outlines a method for obtaining suitable sets 
of chemical reactions for the study of rate equations and 
a simple way of verifying if these sets are in agreement with 
all known trajectories. All trajectories should be realizable 
from this set of reactions without violating the free energy 
constraint. I t  will be shown that the minimum number 
of reactions required to describe a complex reaction system 
can be larger than the N - E,  which is the number of 
stoichiometrically independent reactions. A set of reac- 
tions that fulfill these requirements is not necessarily 
unique, and a l l  one can conclude is whether or not a certain 
postulated set is consistent with the data or not. We will 
also show that often the smallest set of reactions which is 
consistent with the data requires more reactions than 
stoichiometric independence allows. Stoichiometric in- 
dependence (Aris, 1969) and kinetic independence are two 
separate concepts, as will be explained in the paper. The 
term “kinetically independent reaction” is used here for 
an observable overall reaction that is made up of individual 

elementary steps and occurs independently of all other 
observable reactions that occur simultaneously. A simple 
method for efficiently choosing a set of overall kinetic 
equations suitable for reactor modeling will be presented 
later. 

Define a “composition space” as the set of all possible 
compositions. This space does not have all the properties 
of a formal vector space but is a useful construct. The 
previous results have two important implications for the 
reaction engineer and the catalyst chemist. The first is 
that if one knows the set of reactions that a catalyst pro- 
motes, one can predict the entire set of compositions 
reachable from a given starting position, independent of 
the magnitudes of the reaction rates. This bounds the 
selectivity and conversion achievable by improvements of 
the catalyst, if these improvements only change the relative 
magnitudes of reaction rates without a change in the 
mechanism that the catalyst promotes. If an improved 
catalyst leads to compositions which are still in the space 
accessible by the reactions promoted by existing catalysts, 
then the improved catalyst does not promote new inde- 
pendent reactions. Conversely, if a new catalyst shows that 
it can reach a composition forbidden by the known reaction 
mechanism of an available catalyst, it merits further in- 
vestigation even if the preliminary results are not eco- 
nomically promising. Thus, such a procedure provides a 
screening tool for evaluating new catalysts. This analysis 
can be done using only thermodynamic data, by reasonable 
computations. A large part of the paper will therefore 
discuss how to compute the set of compositions reachable 
from a specified initial condition given a set of overall 
reactions. 
111. Bounds on the Reachable Composition Space 
for Monomolecular Reaction 

We begin by analyzing a monomolecular reaction system 
involving three species. Such a simple system allows us 
to present the basic concepts of our method in a simple 
graphical way. Later we will extend it to more general 
cases. 

For linear systems the properties of the system have 
been studied in detail by Wei and Prater (1962). The fact 
that a reaction system is monomolecular in the sense that 
all reactions can be expressed in the form Ai -e AI does 
not imply that the reaction rates are. a linear function of 
concentration. Our approach will not involve any as- 
sumptions of linearity. For simplicity, we start with the 
linear approach of Wei and Prater. Consider the mono- 
molecular system. 

A-B 

C 
( 3 )  

As the system has three components and the reactions are 
all monomolecular, there is only one independent element 
balance. Therefore, it follows from eq 2 that there are only 
two stoichiometrically independent reactions. However, 
it is intuitively clear that, a t  times, three reactions are 
needed to describe the kinetic behavior of the system (see 
Wei and Prater, 1962). 

In our first example, we assume that the equilibrium 
constants of all three reactions are equal (see Figure la). 
One can then ask what constraints are imposed by the 
second law on the reachable composition space. In this 
system the total number of moles remains constant. 
Therefore, the Helmholz and Gibbs free energies are equal 
to each other. The example was intentionally chosen such 
that pure A, B, and C have the same molar free energy and 
all points inside the triangle ABC have a free energy less 
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The limitations on the reachable composition space are 
not direct consequences of the second law. They are 
thermodynamic consequences of the design decision to use 
an isothermal reactor without any selective membranes. 
In theory, one can devise a hypothetical reactor which will 
force pure A to go to pure C without violating thermody- 
namic constraints. Consider the hypothetical reactor il- 
lustrated in Figure lb,  in which the feed enters the reactor 
through a selective membrane permeable only to A and 
the product is removed through another selective mem- 
brane permeable only to C. The reactor itself is never more 
than infinitesimally displaced from its global equilibrium. 
Inside the reactor the total pressure (or molar concentra- 
tion) is larger than that of the feed or product, but, since 
the fugacity (or partial pressure) of A is differentially 
smaller inside the reactor than in the feed, this does not 
cause any problem for this hypothetical reversible reactor. 
If the partial pressure of the product inside the reactor is 
slightly smaller than the pressure of pure A in the feed, 
one can provide a small driving force to fulfill the demand 
that the free energy change should be negative definite. 
For real life such selective membranes are not usually 
available. In the absence of the membrane, constraints 
are imposed by the stoichiometric relations in the system 
which are independent of catalyst properties. The most 
important of these is the requirement that the free energy 
along any trajectory must be negative definite. If the 
reactions are really linear kinetic reactions, the reachable 
composition space is much smaller than AHGFA in Figure 
la. 

The requirement for detailed balancing at  equilibrium 
imposes an additional and more restrictive constraint. In 
the case of a monomolecular reaction which implies the 
linearity of the reaction rate expressions, detailed balancing 
also holds far from equilibrium. Therefore, for the linear 
case all the reaction rates rL can be written in the form 

~ A = B  = k([AI - [BI/KAB) ( 3 4  
where K A B  is the equilibrium constant of the reaction A 

B (see Wei and Prater, 1962). If one now imposes on 
the reactor system the further constraint of a catalyst 
which has uniform properties and therefore the same rate 
constants for all compositions, there are even more severe 
restrictions on the accessible composition space (see Faith 
and Vermeulen, 1967). 

Consider the monomolecular system in eq 3 with the 
above constraints. If one starts with pure compound A, 
then the accessible composition space for any reaction rate 
combination is the shaded area AHEFA shown in Figure 
la.  The bounds AHEFA are derived as follows. In this 
system there are essumed to be three independent first- 
order reactions. As the backward reactions are related to 
the forward reactions by eq 3a, there are only three in- 
dependent rate constants. We are interested only in the 
trajectories (or set of compositions) that result from these 
reactions. However, the trajectory in the composition 
space remains constant if all reaction rates are multiplied 
by an arbitrary constant. We can therefore designate one 
of the reaction rates as unity and change the two others 
over all possible values. Each set of three rate constants 
yields a specific trajectory. When this is done, all possible 
values of the rate constants and all compositions that can 
be reached by any trajectory from A lie in the region 
AHEFA. The detailed computations for this system are 
given in Faith and Vermeulen (1967). Krambeck (1982) 
has developed a simple method to obtain such limits for 
linear reactions of monomolecular systems of arbitrary 
species. 

The boundary AHGFA is not a direct result of the 

A 

tA 1 A ; : Y C  CATALYTIC IC IC 
REACTOR ’ LEPUILIBRIUMI ’ 

SEMIPERMEABLE MEMBRANE 

( b )  
Figure 1. (a) Triangular composition diagram for the isothermal 
reaction system A B, B + C, C + A (eq 3), K1 = K2 = K3 = 1. 
Area AHEFA represents the accessible composition space by tra- 
jectories with initial composition of pure A. All reactions are as- 
sumed to be linear with fixed reaction rates; (-) shows the 
boundaries for the accessible composition space via all trajectories 
for which AG I 0 starting with an initial composition of pure A. No 
assumptions are made regarding linearity or reaction rates. (b) 
Idealized concept of a catalytic reactor with semipermeable mem- 
branes for the reaction system shown. Semipermeable membranes 
are selectively permeable exclusively to A (SPl) or to C (SP2). 

than or equal to that of the pure compound. Thus, if the 
initial composition is pure A, then there is no thermody- 
namic constraint to go to pure B or C at  constant tem- 
perature and pressure. 

Every composition point in Figure l a  is in principle 
reachable starting from pure A. However, if we limit 
ourselves to an isothermal chemical reactor, we impose an 
additional constraint. All reaction trajectories must have 
a decreasing free energy along the trajectory. In this ex- 
ample, there is no trajectory leading from A to B in which 
the free energy stays constant or monotonically decreases. 
This is shown in Figure l a  where the lines of constant free 
energy are plotted. All possible trajectories from A to B 
have a definite minimum. Therefore B is outside the 
accessible composition space from A. Using the iso-free 
energy lines, one can easily check which compositions can 
be reached from A, via a trajectory which satisfies the 
requirement that along the trajectory the free energy 
change is always negative definite. All reachable compo- 
sitions are inside the area bounded by the curve AHGFA 
in Figure la.  (In computing this bound it was assumed 
that the change in free energy, while negative, could be 
infinitesimally small.) 
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pounds, then the number of moles for each compound A, 
form a vector Nj (j = 1, 2, ..., N). Any stoichiometric 
relation can then be expressed as 

N 

j=1 
CvjAj 0 ( 5 4  

where uj is the coefficient of species Ai in the stoichiometric 
relation. The sign of vj is used to designate the coefficient 
of products as positive and reactants as negative. If a 
single reaction occurs an initial composition defined by a 
vector Njo  changes to another composition Nj. The reac- 
tion expression 5a defines the direction of the vector that 
connects the two composition vectors. If there are R re- 
actions, then (5a) can be rewritten in the form 

(5b) 
N 

j = l  
C U . . A .  51 J = 0; (i = 1, 2, ..,, R )  

where the free index i indicates the number of the reaction 
chosen. If the set of reactions is chosen such that they are 
linearly independent, then R is equivalent to S in eq 2. 
However, eq 5b is valid even if the equations are not all 
linearly independent. If one starts with a given initial 
composition which contains Njo moles of compound Aj, we 
can then express any composition resulting from this initial 
composition 

R 

i=l  
N j  = Nj,  + C~ijti (6) 

where Si is the relative magnitude of the conversion for 
each of the reactions. (ti could be either positive or neg- 
ative depending on how one writes the stoichiometric re- 
action.) The set of vi& again forms a vector that connects 
the vector Njo with t i e  composition vector Nj. For purely 
stoichiometric descriptions one chooses a set of reactions 
for which S = N - E,  but for kinetic purposes we can 
choose a larger R and eq 6 will still be valid. The only 
difference is that if the dimension of ti is equal the number 
of reactions, equal to N - E then the vectors vijfi  are lin- 
early independent of each other. In case the number of 
reactions R is greater than S, this is not true. Each vij& 
will be a vector that represents the composition change due 
to the reaction i. The number of actual reactions that can 
occur is not limited by any considerations of linear inde- 
pendence. Thus there is no limit to the number of reac- 
tions that enter into the vector vi.&. Linear independence 
is only a convenient tool to descriL stoichiometric changes 
and compute global equilibrium. It  does not enter the 
choice of reactions if one wants to describe physical 
changes by observable overall reactions. 

Most chemical reactions consist of a number of inter- 
mediate steps involving free radicals or, in case of catalytic 
reactions, adsorbed species. We often do not observe them 
and are content to describe the system by overall kinetic 
relations, the stoichiometry of which can be described by 
an expression such as eq 5a. We call a reaction kinetically 
independent of i t  fulfills two criteria: (a) I t  occurs inde- 
pendent of the other reactions in the sense that the only 
way the other reactions affect it is by removing or adding 
to the total system species involved in the reaction. It does 
not matter that other species not appearing in (5a) catalyze 
it or inhibit it. We require only that no other reaction has 
to occur simultaneously to promote it. (b) I t  has to fulfill 
the criterion that AG I 0 separately for the vector viisi. 
This is a direct result of assumption (a). A more rigorous 
definition of a kinetic independent set of reactions will be 
given later. 

For our model system, S = 2 as N = 3 and E = 1. For 
the linear case it is obvious that kinetically we can take 

K, : K2 K3 1.0 

E 
F 

Figure 2. Thermodynamic limitations on kinetic trajectories for the 
isothermal monomolecular reaction system shown. Each individual 
reaction separately fulfills the conditions of decreasing free energy: 
(E) global equilibrium of system; (APE) hypothetical trajectory from 
pure A to equilibrium. 

second law. It  is derived from assuming that, in this 
system, there are no selective semipermeable membranes 
and the catalyst is uniformly accessible by reactants and 
products. This will be called a “stoichiometric constraint”. 
Note that the constraint is more severe than merely re- 
quiring AG I 0, as the isocline of free energy passing 
through A extends beyong the triangle area. However, the 
reachable composition space is much larger than the 
shaded area AHEFA which was derived assuming fixed 
reaction rates. Let us now examine the reasons for the 
differences in the accessible composition space and con- 
sider how the larger permitted space can be reached. 

We begin by removing the requirement that the ratio 
between all reaction rates must remain constant. Assume 
that one could find different catalysts that allow one to 
vary the relative magnitudes of the reaction rates a t  will. 
This catalyst is then placed in a prescribed order along the 
length of an isothermal plug flow reactor. For this case 
a rigorous limit on permissible reaction trajectories can be 
derived without invoking the concept of detailed balancing 
by demanding that the criterion that free energy changes 
must be negative will be fulfilled for each individual re- 
action. Thus, the reaction vector 

A, + A, (4) 

must satisfy these criteria a t  each point in the trajectory. 
Moreover, no trajectory following along this vector can pass 
any point a t  which this reaction is in equilibrium. The 
vector A - B cannot pass the line CF which forms an 
attractor for the reaction vector A - B, regardless of 
starting composition (see Figure 2). For a first-order 
reaction system in which eq 3 holds, this simply means that 
all rate coefficients are positive. Along CF the reaction 
A + B is in equilibrium. If only the reaction A + B occurs 
and one starts a t  an arbitrary composition, either to the 
left or right of this line, one will always reach a composition 
very close to the line CF. 

Consider now the case of an experimentally measured 
trajectory of composition changes as given by the line APE 
in Figure 2 and one looks at  the composition P on this 
trajectory. The tangent to the trajectory is a vector that 
gives the local change of composition. The direction can 
be expressed independently of the rate at which the change 
occurs ( h i s  and Mah, 1963; h i s ,  1969). Assume that there 
is a set of chemical reactions involving N compounds. If 
one examines any composition based on these N com- 
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three independent kinetic reactions (R = 3). The fact that 
R is larger than S does not change the way in which we 
use the system of such equations to describe a change in 
composition. I f R  is larger than ( N -  E) ,  the decomposition 
of the vector into the individual reaction vectors v& is 
indeterminate, because the reactions are no longer stoi- 
chiometrically independent. However, given Njo and Nj, 
CRi=lvijEi is completely determined; only its components 
are not. 

The tangent to a trajectory is defined as the vector 
CRi,,p& at  a point of the trajectory. For our set of three 
reactions, the term vij represents three unit vectors, each 
with a direction parallel to one side of the triangle. From 
a thermodynamic point of view, there are no limitations 
on the relative magnitudes of the A&, as long as they are 
small. The second law of thermodynamics only requires 
that the free energy along the trajectory is negative defi- 
nite, or 

for each point, where pj is the molar chemical potential 
of Aj at that point. However, if the reactions are kinetically 
independent in the sense defined above, then each indi- 
vidual reaction must fulfill this condition separately, or 

N 

for each i. Thus, thermodynamic constraints determine 
only the signs of the A t ;  they do not determine their 
relative magnitudes. 

Equation 7b is simply a statement that each reaction 
occurs separately in a direction of decreasing free energy 
along its path. That is, the monomolecular reaction A + 
B cannot transfer its free energy decrease to the separate 
reaction B == C, or A C. (See Boudart, 1983; Gorban 
et al., 1982.) In a linear system, eq 7b is equivalent to the 
statement that the rate coefficient in eq 3 must be positive. 
If one accepts eq 7b, then one can define bounds on pos- 
sible trajectories. At each point any permissible tangent, 
made up from the three real reactions, must be composed 
of three vectors, vi jA[ ,  in a way consistent with eq 7b. 

In our example we give the directions as v(A-.B), v(B-C), 
and ~ ( ~ 4 )  at  point P. These are the directions of the three 
individual reactions in composition space, and are parallel 
to the sides of the triangle. The unit vector corresponding 
to the reaction A e C is between those corresponding to 
the two other reaction vectors. Thus the vectors corre- 
sponding to the reaction A + B and B + C constrain the 
possible direction of the overall reaction vector at point 
P. As shown in Figure 2, only kinetic trajectories passing 
P between the reaction vectors vAB and vBC can be con- 
structed from these three reactions such that they fulfill 
the requirements that free energy decreases for each in- 
dividual reaction separately. Therefore the vectors cor- 
responding to the reactions A - B and B - C are called 
limiting vectors a t  point P as all permissible trajectories 
must have a tangent vector that points in a direction be- 
tween them. If one considers all points inside the triangle 
AFE, they all share the same limiting reaction vectors. The 
total composition space is divided into six subsections, each 
of which has different sets of limiting reaction vedors. The 
dividing lines are the equilibrium lines for the individual 
reactions, which are called "attractors". A trajectory that 
goes along the attractor in the direction toward global 
equilibrium is always permissible. 

Consider all possible trajectories starting at  the point 
P (see Figure 3). In the subsection AFE the line PL forms 

C 
// \\ 

A Y  I 
F 

Figure 3. Accessible composition space (shaded area) from initial 
composition P. Ratio of rate constants kl to k2 to k3 can be changed 
at will a t  each point of the trajectory (catalyst properties change); 
system assumed to be isothermal: (E) global equilibrium. 

one bound for the possible trajectories. For any point on 
the line PL, the trajectories passing through it can either 
go along the line PL or turn to the inside of the space 
delineated by the lines PL, LE, ET, TP. Consider a point 
N arbitrarily close to PL on the outside of the shaded 
region. A trajectory through this point can either be 
parallel to PL or can enter the shaded space. Any tra- 
jectory that has this property is a limiting trajectory in the 
sense that all trajectories starting from inside the limited 
space cannot cross this trajectory. The line PL therefore 
defines a limiting trajectory, and in our terms, it is a 
minimal bound for the space of permissible trajectories, 
as every point in the PLET trapezoid is reachable by a 
straight trajectory from P. Such a trajectory is permissible 
under the constraint of decreasing free energy for each of 
the three reactions chosen as the basis of our set (A e B, 
B + C, A == C). 

Can one obtain a minimum bound for all trajectories 
starting at P? (A minimum bound is here defined such 
that no composition outside the bounded set of compo- 
sitions is reachable from P and all compositions inside it 
are reachable.) This can be done as follows: L is the 
intersection of the limiting line PL with the attractor CF. 
From L the line LJ gives a bound for all trajectories in the 
triangle LEJ. The line LJ is a true minimum bound. At 
any point close to LJ the permissible trajectory must either 
enter the triangle or proceed parallel to it because the 
tangent to any permissible trajectory at  a point in the 
triangle FEB must either be parallel to LJ or point to the 
inside of the triangle LEJ. At  J one reaches another at- 
tractor, and by the same argument one can reach D. From 
D the limiting trajectory counterclockwise goes to M and 
from this point it will continue to encircle the equilibrium 
point E. Thus, if one continues from point P to the right, 
one forms the limiting trajectory given in Figure 3. This 
limiting trajectory circles around the equilibrium point in 
a way that is not permitted for a closed mixed linear 
system near equilibrium (Onsager, 1931). 

One can also construct a limiting trajectory traveling 
around E from P going clockwise to the left. I t  will in- 
tersect the trajectory from the right at &. The shaded area 
will then give the total bound on all compositions reachable 
by trajectories starting from P. Using our criteria, all 
points inside the shaded area are reachable by a permitted 
trajectory but no points outside this area are accessible. 
The limiting trajectory is in theory realizable if one has 
a set of three catalysts, each promoting a single reaction 
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Figure 4. Shaded area represents accessible composition space from 
initial composition A for the same system shown in Figure 3: (-) 
shows boundaries of accessible composition space via all kinetic 
trajectories for which AG 5 0 starting from initial composition A. No 
assumptions are made regarding linearity of reaction rates. 

of the three permitted reactions. A plug-flow reactor could 
be built with different sections, each containing a different 
catalyst permitting the single reaction which gives the 
limiting trajectory. With a single catalyst, kinetic constants 
would not change abruptly in the way our limiting tra- 
jectory does. 

The limiting trajectory in Figure 3 also bounds all kinetic 
trajectories that can occw using a single catalyst promoting 
these three reactions. However, for this case it is not a 
minimal bound in the sense that there will be compositions 
inside the shaded area that cannot be reached from P by 
using realizable trajectories regardless of what the prop- 
erties of this single catalyst use. I t  is only a minimum 
bound for the hypothetical reactor in which we were free 
to change catalysts at  each position. The advantage of this 
bound is that it can be computed without any knowledge 
of the reaction rates using thermodynamic constraints. All 
we needed was the knowledge of the direction of the re- 
actions (which are obtained here from the fact that the 
reactions are monomolecular). Figure 4 shows the limiting 
trajectories when the initial composition is pure A. 

Until now we have assumed that all three reactions 
occur. In some cases some reactions are much less likely 
to occur than others or are very slow compared to the rates 
of the other reactions. This knowledge can be included 
in the analysis. For example, if the reaction A == C is slow 
compared to the other two reactions, the accessible com- 
position space is reduced (see Figure 5). The reason for 
this is that at  any point the trajectory must be between 
the two vectors defined by the two first reactions A + B 
and B += C. This follows from the assumption that A + 
C is always small compared to A + B and B + C. Figure 
5 also shows the composition space accessible from pure 
A for the reaction set A + B, A + C. We note that the 
space is much larger than for the set A + C, B F= C and 
is only slightly smaller than the space reachable by all three 
reactions. Computations such as given in Figure 5 allow 
one to estimate limits on the potential value of new cat- 
alysts that promote an additional more desirable reaction 
path in a complex system. 
IV. Set of Reachable Compositions for Nonlinear 
Reactions 

In deriving the limits on the accessible composition space 
using reaction trajectories, it was assumed that the reac- 
tions are both monomolecular and linear. However, the 
results can be extended to the more general case where 
these conditions may not apply. The derivation outlined 
in Figure 3 assumed only two properties of linear systems: 

Figure 5. Area AEFA-accessible composition space realizable by 
the reaction set A + B, B == C with initial composition A; area 
AHIEJF-accessible composition space realizable by the reaction set 
A + B, A + C with initial composition A. System is isothermal but 
reaction rates may be varied arbitrarily. 

(1) The only reactions that occur are the three reactions 
A B, A F= C, and B + C. Therefore, the overall reaction 
rate vector is a sum of the vectors representing these three 
reactions. (2) Each of the individual reactions is separately 
governed by the demand that free energy decreases in the 
direction of this individual reaction. 

These conditions are automatically fulfilled (see Wei and 
Prater, 1962) if the reactions are truly linear. In this case 
the three reactions are also the only possible reactions. 
However, linearity is not a necessary condition. The same 
three reactions with strongly nonlinear reaction rates will 
have exactly the same constraints on their trajectories. 

If the reactions were all second order, nonlinear events 
and if the overall reaction were 2A + 2B, the direction of 
the reaction vector would be identical with the reaction 
A + B and so would be the line at  which these reactions 
are in equilibrium. All the arguments in the previous 
section would apply, if any one of the three reactions, or 
all of them, should be second order. If the reaction rate 
expression is more complex, such as a Langmuir expres- 
sion, then the reaction expressed by the stoichiometric 
expression A + B is not a nonlinear event but the sum of 
a series of complex events involving adsorbed series or free 
radicals. But the overall reaction would still go in the same 
direction toward equilibrium and the equilibrium itself 
would be the same, provided the concentrations of the 
intermediates are such that they do not change the 
equilibrium. 

That the nonlinear system still satisfies the second re- 
quirement can be deduced from the following argument. 
Assume the reaction A + B which occurs in the presence 
of several other compounds, all of which are nonreactive, 
i.e., their individual concentrations do not change. The 
reaction will always go toward the equilibrium composition. 
This is true even if the observed reaction A + B does not 
describe a real molecular event but rather the sum of a 
large number of intermediate steps involving free radicals 
or special states at  a catalytic surface. The exact mecha- 
nism is unimportant as long as the concentration of in- 
termediates is very small. For example, one could assume 
a mechanism, such as 

A + A = =  A + A* == A + B 
A = M = B  (8) 
2A + P + 2B 

If the concentrations of M and P remain small compared 
to those of A and B, then the equilibrium 
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is unaffected by the presence of both P and M and is 
independent of the mechanism or sequence of reactions. 
The reactions described by eq 8, occurring by any similar 
mechanism with an arbitrarily large number of steps be- 
tween A and B, have one important property. Any tra- 
jectory based solely on these reactions cannot cross the line 
or surface in composition space for which the reaction A 
+ B is in equilibrium. This follows directly from the 
previous statement that the observed reaction A + B will 
always proceed toward equilibrium. It  is not dependent 
on the system being linear. In the case of non-first-order 
systems, there may be more than three rate-determined 
reactions. I t  can be shown, however, that the requirement 
of decreasing free energy in the direction of each individual 
reaction must still apply. 

In a homogeneous isothermal system the free energy is 
a continuously differentiable function of composition. If 
a very small amount of P is formed in the system, the 
change in free energy due to its formation will also be very 
small as there are no known intermediates for which the 
molar free energy is very large compared to the other molar 
free energies. Therefore, a very small amount of P cannot 
modify the free energy of system along the path A + B, 
and the free energy constraints of the single reaction A * 
B will be independent of the mechanism of the reaction. 
This is not true, however, if the intermediate P appears 
in large concentration. For example, one can regard C in 
Figure la as an intermediate of the reaction A + B. As 
long as [C] is small the reaction trajectory is very close to 
the line AB, limited by the free energy constraint of the 
reaction A + B and cannot pass the equilibrium line FC. 
On the other hand, if the net amount of C is large, one can 
find a permissible trajectory that passes this line. How- 
ever, if the concentration of any intermediate is large, it 
should be measurable and should be included in the co- 
ordinates of the composition space. 

One should note that, near the equilibrium of the re- 
action A + B, the detailed reaction mechanism must also 
fulfill the constraint of detailed balancing for the forward 
and backward reactions. This has led some authors ( h i s ,  
1969) to suggest that complex reaction rate expressions 
should always be written such that detailed balancing near 
equilibrium is automatically satisfied. This is an advan- 
tageous procedure for obtaining empirical fitting functions, 
since otherwise they would only be valid far from equi- 
librium. However, for our purposes, the only requirement 
for the single reaction is that the free energy must decrease 
along the reaction path. For the bounds derived in Figure 
3, it is therefore not important if the reaction rates are 
linear or are more complex functions of concentration. 
What is important is that the overall reaction is of the form 
given. 

There is, however, one essential difference between the 
linear system with three compounds and the case in which 
the same compounds undergo nonlinear reactions. For a 
linear system the three reactions in eq 3 are the only 
possible reactions. In a nonlinear system one can write 
many other overall reactions, such as 

While stoichiometrically one can decompose such a reac- 
tion into the three reactions given, these are kinetically 
not equivalent. This will be discussed in the next section. 
If the reactions are nonlinear, then for the constraints in 
Figure 3 to apply to the system of reactions one further 

A -  0 

2 A = B + C  

t/’ 
C 

8 

Figure 6. Accessible composition space (shaded area) from an initial 
composition A realizable by the reaction set A + B, B + C, A + C, 
2A = B + C. System is isothermal but reaction rates may be varied 
arbitrarily. The line (---) shows the locus of compositions at 
chemical equilibrium according to eq 11. 

assumption is needed, namely, that the only way that 
reaction B + C affects reaction A + B is via the stoi- 
chiometric changes in the system. A semipermeable 
membrane, removing or adding A or B, would have exactly 
the same effect on the reaction A + B. If this holds we 
say that the reaction A + B is not coupled to the reaction 
B + C. As the observed reactions are not necessarily 
monomolecular but may involve a series of complex re- 
actions, the concepts of coupling and independence require 
a precise definition. This is presented in the next section. 

V. Coupling of Catalytic Reactions 
Consider the reaction mechanism 

2 A = M + B + C  (10) 

M is an intermediate that is present only in very small 
amounts, such that its influence on the free energy of the 
system is negligible and the topography of the free energy 
isoclines in the volume ABCM are practically identical with 
that in the plane ABC. The direction of reaction 10 is 
given by the vector PQ in Figure 6. This reaction can 
proceed as long as the free energy declines along this 
vector. The equilibrium line for which 

is given also in Figure 6. Reaction 10 is stoichiometrically 
the sum of the reactions A * B, and A * C. As it is not 
linearly independent in a stoichiometric sense, there is no 
reason to add it to the system if one merely wishes to 
compute equilibria or heat and mass balances. 

However, kinetically, reaction 10 is completely different 
from the pair of separate reactions A C. 
Consider, for example, the composition at point H. Here, 
the reaction A + C is at equilibrium. A reaction trajectory 
starting from composition H in the direction P - Q has 
a decreasing free energy. As this trajectory corresponds 
to the overall reaction 2A B + C, there is no thermo- 
dynamic reason why such an overall reaction could not 
occur. However, the two individual reactions A + B and 
A + C could not result in such a trajectory. The reaction 
A + C has an increase in free energy along this trajectory, 
whereas the reaction A B has a decrease in free energy. 
In an isothermal system there is no way the independent 
reaction A F=? B can transfer its release of free energy to 
the independent reaction A e C (Bouduart, 1983). The 
intermediate M permits one to achieve this goal. I t  couples 

B and A 
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the two reactions. If M is measurable and occurs in sig- 
nificant concentration, then the reaction 2A * M would 
have to be included as a separate reaction. Often in ca- 
talysis, however, the intermediate is unknown or occurs 
in small quantities. Earlier we specified that we deal with 
phenomenologically observable reactions and not with 
elementary steps. Therefore, there is nothing wrong in 
writing reaction 10 as 2A ;=t B + C, since this represents 
the real, phenomenologically observable reaction better 
than the pair A + B, B * C. Reaction 10 therefore de- 
scribes a permissible form of coupling, as all real steps have 
a decreasing free energy. This example illustrates the 
difference between linear independence in stoichiometric 
relations and kinetic independence of phenomenological 
reactions defined in this paper. 

Let us look more carefully at  the effect of including the 
added reaction 2A B + C. The intermediate M opens 
a trajectory that is not allowed by the two separate reac- 
tions or by the three reactions used previously. As the 
concentration of M is small, it does not change the to- 
pography of the free energy relations. However, it couples 
the two reactions, A + B and A C, and creates a new 
permissible trajectory. For a kinetic description of a 
system having such a trajectory, one must add reaction 10 
(or another reaction with similar properties) to the set of 
the first three react,ions. 

Figure 6 shows the new reaction space boundary, in- 
cluding reaction LO. In comparison with the boundaries 
for the first three reactions only, there are now eight re- 
gions in which the directions of the limiting vectors can 
change. Note that the accessible composition space is 
larger than the one permitted using only the three first- 
order noncoupled reactions (Figure 4). 

The coupling of the two reactions in eq 10 is due to a 
joint intermediate. The terms coupling and independence 
were previously described in terms of semipermeable 
membranes. Two reactions are independent if the only 
effects on each other are equivalent to the effect of a se- 
lective semipermeable membrane that can change the 
concentration of the reactants by adding or removing a 
reactant. One can now define coupling in another way. 
Consider an overall reaction that can be broken down into 
two simpler reactions. The two reactions are called cou- 
pled if the overall reaction permits trajectories which are 
thermodynamically not permitted by the two separate 
reactions. Elementary reactions cannot be coupled. 
Coupling requires a more complex mechanism involving 
joint intermediates. However, joint intermediates do not 
always lead to coupling. For example, the reactions 
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have a joint intermediate M, but are not coupled in the 
thermodynamic sense discussed here. The restrictions on 
the direction of reaction trajectories for reactions 1 2  are 
identical with those of the two individual reactions A + 
B, A C. 

In the above definition no constraints are imposed on 
the nature of the actual reaction rate expression. I t  may 
be quite complex as it represents the sum of a number of 
molecular events. In addition, the individual steps of the 
phenomenological reaction are not required to be in steady 
state or even pseudo steady state. The intermediate 
compounds may well change with time, which will change 
the overall reaction rate. It also makes no difference if the 
reaction rate expression contains concentrations of com- 
pounds that do not appear in the overall reaction (or for 
which v,, is zero in reaction i). Such rate expressions are 

Figure 7. A hypothetical trajectory in composition space with an 
initial composition pure A. The only requirement is that free energy 
decrease along the trajectory. The different tangents show the di- 
rections of the overall reaction at  each point, which can be realized 
if the ostensible reaction is equal to the overall reaction. 

common in catalytic reactions, in which some catalyst sites 
become unavailable due to preferential adsorption. This 
will slow reactions in which the adsorbed compound is not 
involved but does not necessarily lead to coupling in our 
sense. The only requirement is that the concentrations 
of these intermediates are sufficiently small that they do 
not affect the free energy isoclines. 

The model system used here has only two linearly in- 
dependent stoichiometric relations. However, in Figures 
3-5, three kinetically (or thermodynamically) independent 
reaction vectors are assumed. In Figure 6 a fourth reaction 
vector is added. This system could have a large number 
of such thermodynamically independent overall 
“ostensible” reactions. For each such reaction (as for ex- 
ample the one shown in eq lo), there could be a large 
number of underlying mechanisms. These may even lead 
to ostensible reactions with different stoichiometric 
coefficients (Happel and Sellers, 1982). As long as the 
direction of the overall reaction vector is the same, these 
mechanisms result in the same thermodynamic constraints 
and are therefore equivalent for our purposes. This allows 
one to illustrate the concept of thermodynamic inde- 
pendence of kinetic reactions defined below. A reaction 
2A + B + C is thermodynamically independent of the 
three reactions A F= B, B + C, and A + C if it allows 
trajectories that cannot be realized with the three single 
reactions. The assumption that such an additional inde- 
pendent reaction exists or is required depends on exper- 
imental evidence that a trajectory that is not permissible 
by the simpler set exists. Each new reaction would add 
another possible vector. If enough reactions are added, 
one can, in principle, realize any trajectory for which the 
overall free energy is decreasing. 

In Figure 7, a hypothetical trajectory is shown. Overall 
reactions which have a direction tangential to the trajectory 
vector are shown for several points. For the isothermal 
system ABC, the only constraint imposed by the second 
law is that the free energy should decrease. Owing to 
stoichiometric constraints, however, not all points in the 
composition space with a lower free energy than that of 
the starting point are accessible. For example, point X in 
Figure 7 has a lower free energy than the initial compo- 
sition of pure A but cannot be reached by any trajectory 
with continuously decreasing free energy because the free 
energy isocline passing X crosses the stoichiometric 
boundary. However, any stoichiometrically permissible 
kinetic trajectory along which the free energy decreases 
can, in theory, be realized by a series of plug-flow reactors 
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fitting. To do this one needs a set of observed trajectories 
in composition space. These trajectories should have 
different initial compositions and ideally will cover the 
composition space of interest over the actual range of 
temperatures and pressures. One can then verify if the 
following two conditions are met. (1) Each experimentally 
accessible composition should be reachable from the initial 
composition by using these three reactions and the criteria 
outlined in section V. (2) Equation 7b must be fulfilled 
at  each point of each trajectory. In other words, the tan- 
gent of the trajectory at each point must be decomposable 
into the assumed reactions in such a way that each of the 
individual reactions goes in the direction of decreasing free 
energy. 

At each point one can construct a tangent which can be 
expressed as a vector connecting two adjacent composi- 
tions. The magnitude of this vector can be chosen arbi- 
trarily. If the number of reactions R chosen is equal to 
the number of linear stoichiometric reactions S, one can 
decompose the tangents uniquely into the direction of the 
reactions as the difference between the compositions is 
given by the vector 

with different catalysts provided one can find catalysts that 
promote a set of suitable coupled reactions. 

In an isothermal reactor system with a single catalyst 
there are additional Constraints. Reaction rates of different 
reactions cannot be altered at  will. For a given catalyst 
they have a constant relationship which introduces kinetic 
constraints much narrower than free energy limits. 

For these reasons one often uses more than one catalyst 
to achieve a specific overall reaction. However, even with 
multiple catalysts the number of possible reactions with 
available catalysts is finite and much smaller than is re- 
quired to achieve trajectories close to the free energy 
constraint. Therefore, one is usually dealing with ther- 
modynamic constraints which are the results of kinetic 
properties of available catalysts. Our method allows one 
to learn something about these thermodynamic constraints 
by looking at  the thermodynamic implications of catalyst 
properties. If one knows which reactions are occurring at  
reasonable rates (rates fast enough to have an impact on 
the concentrations in the time-span of observation), one 
can derive bounds for the set of accessible compositions, 
using only information from thermodynamic tables. In 
some sense, this is similar to computing a global equilib- 
rium in complex reactions. Then one only includes com- 
pounds which are formed at  observable rates and which 
are stable enough to exist in measurable concentrations. 
Knowledge of kinetics enters through the choice of the 
compounds used to compute the global equilibrium com- 
position. One does need more information to compute 
bounds for the accessible space by our methods; one needs 
to know which ostensible reactions actually occur. 

The method described here can be extended to an ar- 
bitrary number of compounds. If the number of stoi- 
chiometrically independent reactions is larger than 2, the 
graphical description becomes more complex and requires 
a machinery that is outside the scope of the paper. At- 
tractors for a single reaction become surfaces in multidi- 
mensional space and divide the space into regions in which 
the limiting vectors are constant. However, the principles 
remain exactly the same and the proofs hold for the 
multidimensional case as well. No single reaction can pass 
through the attractor surface defined by its equilibrium 
relation. If the number of stoichiometrically independent 
reactions is larger than 3, the graphical representation is 
too complex. But one can always use eq 7b to compute 
bounds on permissible trajectories and to check whether 
an experimental trajectory is allowable by an assumed set 
of reactions. 
VI. Defining a Sufficient Set of Chemical 
Reactions and a Sufficient and Kinetically 
Independent Set 

We can now deal with a problem raised in the Intro- 
duction, namely: how can one go about setting up a set 
of overall phenomenological reactions that can serve as a 
base for obtaining rate equations in a complex multicom- 
ponent system? Consider the simple case of the isomer- 
ization of three xylenes which has been dealt with exten- 
sively by Wei and Prater (1962). 

O * P  

M 
% Z  (13) 

There are two linearly independent stoichiometric reac- 
tions. However, a set of reaction rate expressions is needed 
to model the system adequately. The set given by these 
three reaction rates is sufficient in the sense that all 
available data can be fitted using three linear reaction rate 
expressions. By using the methods outlined, one can ob- 
tain the necessary results in two ways without kinetic 

Here, the Ati are uniquely given and one can check if 

for all i .  If the number of reactions, R,  is larger than S, 
then the Ati are not unique. One only requires that there 
is one set of A& which fulfills these conditions. If S = 2 
it  can be done by inspection. If S is larger, one can take 
subsets of R with the same dimension as S and check at  
each point for all subsets. If R is larger than 4, this be- 
comes tedious. There is a straightforward method based 
on linear programming called the Simplex Method which 
allows one to solve this for artibrary dimension of R and 
S. It is well described in the literature (Bazaraa and Jarvis, 
1977). A detailed explanation of the method is, however, 
outside the scope of this paper. 

The second condition is more stringent than the first. 
In fact, it implies the first. If eq 7b is satisfied at each 
point of the trajectory than all the compositions in the 
trajectory are accessible. Therefore, the first condition is 
merely a convenient and valuable fast screening technique. 
Note that the order of the reactions was not important. 
If one cannot find for each point a subset for which eq 7b 
holds, then the total set of reactions is insufficient to de- 
scribe the system. Conversely, if both conditions are met 
for a given set of reactions for all trajectories, then the set 
is called sufficient. If a set is sufficient and no subset is 
sufficient, then the set is a minimum sufficient set  of 
kinetically independent reactions. Note that these defi- 
nitions apply only to a given set of experimental data which 
define the accessible composition space. 

In contrast, linear independence of a set of reactions 
in the stoichiometric sense can be defined without any 
experimental data, if one knows only the number of com- 
pounds involved. A minimum sufficient set of kinetically 
independent reactions is not necessarily unique, and dif- 
ferent minimum sets may have a different number of re- 
actions. However, the concept still remains useful as it 
allows one to start with a proposed set of reactions, test 
for sufficiency, and, if desired, reduce that set to a mini- 
mum. 

To describe reactions in multicomponent systems, one 
needs to define a sufficient set such that 
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and fit reaction rate expressions to the experimentally 
observed trajectories. Remember that one is not dealing 
with molecular events but with overall ostensible reaction 
rates. The methods outlined in this paper do not offer an 
easy way to set up a set of reactions to fit the kinetic data. 
In general, one does this studying the reactions in isolation 
and by a combination of experience, intuition, and 
knowledge of possible mechanisms. Once one sets up a set 
of reactions, the techniques allow one to check whether 
the set is sufficient to explain the set of experimentally 
observed trajectories. For any given set of trajectories one 
verifies condition 2 by checking each trajectory separately. 
For several points along the trajectory one computes the 
tangent vector and checks if it is decomposable into the 
unit vectors of the individual reactions of the set assumed 
in a way that eq 7b is fulfilled. 

The set is sufficient if this can be done at  all points of 
all trajectories. If the number of reactions in the set chosen 
is equal to the number of linearly independent reactions, 
S, then a sufficient set will also be a minimum set as the 
minimum number of reactions required to describe the 
reactions underlying the trajectories is equal to the number 
of linearly independent reactions. If the number of re- 
actions in the set chosen is larger than s, then one can 
check if there are any subsets which are sufficient. If not, 
the set is a minimum set. Sufficient minimum sets of 
chemical reactions are not unique, as several sets may be 
consistent with a given set of data. A good kineticist may 
have clues for the choice of a preferable set, but one cannot 
make such choices based on the trajectories. For purposes 
of modeling these sets are equivalent. If the test shows 
that a set of proposed reactions is not sufficient, then one 
must either enlarge it by adding reactions or modify it by 
substituting other reactions. Thermodynamic analysis can 
provide guidelines and clues. A set of reactions used for 
setting up rate equations by fitting experimental trajec- 
tories must be sufficient. There is no requirement for it 
to be minimum, though this may be advisable if there is 
no independent evidence that larger sets are justified. 

In section VI1 detailed examples of applications will be 
presented. However, to illustrate the concepts outlined 
above, we will elaborate a little further on the simple hy- 
pothetical model shown in Figures 3-7. Consider the 
trajectory APE shown in Figure 8. One first tries to use 
the set of the three simple overall reactions (A + B, A * 
C, B e C). This set is sufficient to explain the trajectory. 
As there are only two independent stoichiometric reactions, 
one wants to check if any two-member subsets are suffi- 
cient. The only two-member subset which is sufficient is 
A F= B, B F=! C. While the trajectory could be decomposed 
at  each point into two other subsets (A + C, B F= C) and 
(A + C, A * B), these decompositions would violate eq 
7b at  some point along the trajectory. This is clear for the 
subset A + C, B C as the corresponding trajectory is 
outside the accessible space for this subject, which is the 
triangle AHE. Even the less stringent first condition is 
not met. However, the trajectory is in the space accessible 
by the set A + B, A ;=t C. Close inspection of the tra- 
jectory will confirm that eq 7b is also violated at  some 
points of the trajectory for this subset. 

Now consider the trajectory AQE. It  is not contained 
in the reachable composition space for the subsets (A + 
B, B -* C) and (A =t C, B === C). I t  is, however, in the 
reachable space of the subset (A B, A + C). I t  also 
fulfills eq 7b for this subset a t  each point along the tra- 
jectory. Thus, whether or not a two-reaction subset of 

Figure 8. HSE, APE, AQE-hypothetical trajectories with different 
initial compositions for the reaction system A + B, B C, A .+ C 
shown in Figure 2. The tangents to the trajectory a t  each point are 
the reaction vectors. HSE cannot be realized without a fourth per- 
missible reaction 2A + B + C. For further discussion see text. 

these three reactions can be sufficient depends on the 
experimental data. If the only observed trajectory is APE 
(or AQE) then the subset (A + B, B + C) (or A + B, A 

C) constitutes a minimum sufficient set. If, however, 
both trajectories APE and AQE have been experimentally 
measured, even if at  different pressures or different cat- 
alysts states, then the three-reaction set (A + B, A + C, 
B e C) is the minimum sufficient set as no two reaction 
subsets will fulfill eq 7b at all points for both trajectories. 

Consider now the case in which the trajectory HSE is 
also observed. This trajectory is outside the composition 
space reachable by the basic three reactions. Therefore, 
the basic set is no longer sufficient and additions or 
modifications are needed. For example, if one adds the 
reaction 2A F= B + C to the basic set, then a sufficient set 
is again obtained. The choice of the additional reaction 
is usually based on some knowledge of the observed overall 
reactions. 

If one wishes to determine reliable kinetics for a given 
reaction system, it is preferable to have trajectories with 
different initial compositions over a range of temperatures 
and pressures. For the three-compound system used in 
this paper, the local equilibrium lines and the sets of lim- 
iting vectors are independent of pressure but change with 
temperatures. Plotting figures such as Figures 2-8 for 
different temperatures and pressures and different sets of 
reactions is useful in the study of complex reactions as it 
provides the researcher with insight as to the constraints. 
One can then test the sufficiency of a set of proposed 
reactions for different pressures and temperatures directly 
by using eq 7b at  different points of the observed trajec- 
tories. This technique is especially useful in screening new 
catalysts. Assume, for example, that with a given class of 
catalysts in our model system, the three-member set of 
reactions (A F= B, B + C, A C) is always sufficient. If 
one now finds a catalyst that promotes the trajectory HSE, 
a trajectory that is outside the composition space accessible 
by these reactions, then this provides strong evidence that 
this new catalyst operates by a different mechanism than 
the previous catalyst. Alternatively, it may accelerate 
reactions that, while they may have occurred using the 
previous catalysts, were too slow to have an impact on the 
observed trajectories. Such a catalyst would therefore have 
the potential of achieving selectivities and compositions 
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Figure 9. Accessible composition space for steam gasification of 
carbon starting from pure steam at 1000 K and 30 atm. The only 
compounds formed are CO, COP, H2: (-) composition space for 
which the total free energy change is zero or negative; (-) com- 
position space reachable by a kinetic trajectory along which the free 
energy change is negative definite. (Arbitrary kinetics as in Figure 
7.) Area H20-H-E-H20: composition space reachable by the set 
of reactions 14a, 14b, and 14c. 

unobtainable by the previous class of catalysts. 

VII. Steam Gasification of Carbon 
In this section we attempt to further illustrate the 

concepts of a sufficient set of kinetically independent re- 
actions by examining in detail the gasification of carbon 
or coal chars. As a specific example, we consider the 
steam-gasification of carbon under conditions where the 
only products are Hz, CO, and COz (no methane is formed). 
Since there are five compounds and three elements, two 
independent stoichiometric reactions are sufficient to 
describe the system in a two-dimensional space. Starting 
with pure steam, an element balance of oxygen can de- 
scribe the system completely in a triangular composition 
diagram (Figure 9). The Hz yield is simply equal to the 
steam conversion and can be obtained from the plot. I t  
is normally assumed that the overall reactions most likely 
to take place are 

C + H20 + CO + Hz (144 

CO + HzO + COZ + H2 (14b) 

c + c02 * 2co ( 1 4 ~ )  

However, our analysis will include another kinetically in- 
dependent ostensible reaction 

C + 2Hz0 + C02 + 2Hz (144 

We further assume that the desired product is pure hy- 
drogen. Therefore, the desired overall reaction is (14d), 
which occurs along the axis H20-CO2 in Figure 9. 

Using the methods previously outlined, one can bound 
the accessible composition space at  a given temperature. 
We choose as our first example a temperature of 1000 K 
and 30 atm. If one considers only the constraint that the 
final composition has to have a lower free energy than the 
initial composition, the accessible space covers most of the 
triangle in Figure 9. I t  is shown by the isocline AG = 0. 

A much smaller permitted region results if one now 
includes the additional stoichiometric constraint that, in 
order to reach a given composition, one must find a tra- 
jectory inside the accessible triangle along which the free 
energy G decreases a t  each point. The reachable compo- 
sition space is then bounded by the free energy isocline 
passing through point H (which is the equilibrium com- 

co a. ctn2o e co+nz 
T = 1200eK b. --CotHz0 e C02tH2 

P = 3OATM. c ctco2 e 2co 
d. - - - - - -CtZHZO C02t2H2 

F zco2 HP 
Figure 10. Accessible composition space for the steam gasification 
of carbon reaction system of eq 14 at 1200 K and 30 atm: (-) 
accessible composition space realizable by the subset of 3 reactions 
a, b, and c; (-) accessible composition space realizable by the 
subset of 4 reactions a, b, c, and d. 

position of the reaction C + HzO + CO + Hz. 
Figure 9 also shows the accessible composition space for 

the reaction set 14a, 14b, 14c at 1000 K and 30 atm. Note 
that the limitation of only three reactions further limits 
the accessible composition space. A larger accessible 
composition space is obtained either by changing the 
temperature of the reaction or by adding a fourth per- 
missible reaction as shown in Figure 10. 

Since the desired product is pure H2, the desired overall 
reaction is (14d). Reaction 14d does not occur in practice, 
et least not by itself. However, one can achieve the desired 
end result (almost pure H2) by first gasifying at  high 
temperature and getting close to global equilibrium and 
subsequently cooling the product gas and shifting it with 
steam over a catalyst (reaction 14b). In a nonisothermal 
reactor one can then get practically complete conversion 
of steam to H2 + COP (reaction 14d) despite the fact that 
reaction 14d by itself may be negligibly slow. In a sin- 
gle-stage isothermal reactor one cannot do this unless re- 
action 14d dominates. Such a two-stage operation is a 
standard way in which the reaction engineer overcomes 
constraints imposed by the kinetic nature of the reaction 
system. The final composition reached by such a two-stage 
nonisothermal scheme is not reachable in any isothermal 
reactor, which promotes only the reactions 14a, 14b, and 
14c. (A similarly simplified case was discussed by Shinnar 
et al., 1982.) The advantage of the two-temperature 
schemes is based on the fact that reaction 14a is endo- 
thermic and 14b is exothermic. At  high temperatures the 
conversion of steam by (14a) is high but the global equi- 
librium composition has a high CO content, as the equi- 
librium of reaction 14b is not favorable. If one now reduces 
the temperature, this results in a starting composition 
which is not reachable a t  all at a low temperature. From 
this new starting composition one can obtain a high con- 
version to H2. This trajectory is not permissible at any 
one temperature in an isothermal reactor via reaction paths 
based on (14a) and (14b). This principle is widely used 
to overcome thermodynamic constraints such as in the 
production of methanol (Shinnar, 1983), SNG (Shinnar et 
al., 1982), and other processes. 

The reaction set 14a, 14b, 14c has been successfully used 
to fit experimental data for such gasifiers (Johnson, 1974). 
There is independent evidence that each of these reactions 
is a real ostensible reaction. Reactions 14b and 14c can 
be realized separately. Reaction 14a can never occur 
separately as (14b) always also occurs. We will now try 
and use this set of reactions to illustrate the method of 
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- C t 2 H p O  = COp+PHz 

H 2 0  Z C O p  

Figure 11. Three hypothetical experimental trajectories, HpO-P, 
H,O-R, and H,O-S, realizable by the system of reactions a, b, c, and 
d. 

choosing a set of reactions to fit experimental trajectories. 
We will initially limit ourselves to isothermal reactors. 

In Figure 11, three alternate hypothetical experimental 
trajectories are shown. In the presence of different cata- 
lysts, all three trajectories are theoretically possible even 
with fixed temperature and pressure. Assume that the 
reaction set 14a, 14b, 14c, 14d is a reasonable set with 
which to start the fitting process. First one checks whether 
any of the reactions is much faster than the others. If this 
were the case, then any trajectory would proceed close to 
the equilibrium line of this reaction. If one could assume 
pseudo-equilibrium for this reaction, then after a short 
induction period, one would only have one degree of 
freedom left and, therefore, only one possible trajectory. 
In this case one could not deduce any information about 
the nature of the other reactions. None of the three hy- 
pothetical trajectories fulfills these conditions, though 
trajectory P is close to the equilibrium line of reaction 14a. 

As no one reaction dominates by virtue of its rate, one 
proceeds to the next step. Inspection shows that all three 
trajectories are consistent with the total set of four reac- 
tions. The question is how many reactions are needed to 
be consistent with each specific trajectory. 

First consider three reaction subsets. Since only two of 
these reactions, 14a and 14d, are primary gasification re- 
actions, one initially examines the two reaction subsets 
which contain only one primary reaction. This is illus- 
trated in Figure 12a,b. Note that the accessible space in 
either figure does not cover all three trajectories. (Tra- 
jectory P is outside the space in Figure 12a, and trajectory 
S is outside the space in Figure 12b.) In both cases eq 7b 
is fulfilled for all trajectories which are inside the reachable 
space. These two three-reaction sets cannot fit all tra- 
jectories. Therefore, if the observed trajectory is P, the 
primary gasification reaction must be (14a). On the other 
hand, if the measured trajectory is S, then the primary 
gasification reaction would have to be (14d). Trajectory 
R is consistent with both sets. In reality, observed tra- 
jectories are closer to P than to S, indicating that (14a) is 
the primary reaction. 

One can also look at  smaller subsets containing both 
primary gasification reactions. The simplest subset is (14a, 
14d) which is shown in Figure 13. The permissible space 
covers all trajectories, but trajectory S violates eq 7b. For 
trajectory S to be realizable m e  would therefore need at 
least one additional reaction. If one adds the shift reaction 
14b, then the set becomes sufficient. However, no tra- 
jectory similar to S has been reported. If one could find 
a catalyst that promoted a trajectory similar to S, it would 
indicate that the reaction set assumed by Johnson (see 

F 

o . - - - - c + n ~ o  co*nz 

c. c t c o 2  eco 
b.--CO+H20= C O z t H 2  T i  12WDK 

P = 30 ATM 

( 8 )  
Figure 12. Evaluating minimum sufficient reaction subsets for the 
steam gasification of carbon system, trajectories shown in Figure 11: 
(-1 accessible composition space realizable by the reaction subset 
b, c, d (12a) and a, b, c (12b) for the system with initial composition 
HzO. The trajectory H@P is not realizable by the reaction subset 
b, c, d, whereas the trajectory H20-S is not realizable by the reaction 
subset a, b, c. 

o.--.-CC+HzO= C O t H g  

d - - - - - - c + e n 2 0  C 0 2 t 2 H Z  
T : 1200*K 

Figure 13. Evaluating reaction subsets for steam gasification of 
carbon system shown in Figure 11: (-) accessible composition 
space realizable by the reaction subset a, d, although all three tra- 
jectories H20-P, H,O-R, H20-S are inside the accessible composi- 
tion space. Trajectory H20-S violates eq 7b and is therefore not 
permitted in this system. 

Figure 12b) is insufficient and that the catalyst promotes 
reaction 14d faster than reaction 14a or promotes another 
more complex reaction as the primary gasification reaction. 

Let us now look at  a case where trajectories P and R 
have been measured (either for different chars or in the 
presence of different catalysts), and one is looking for a 
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observable scale. The global equilibrium point a t  500 K 
is so close to the equilibrium point F1 of reaction 14d, C + 2Hz0 + COz + 2Bz, that one cannot distinguish it from 
F1 on the scale of Figure 14. This global equilibrium point 
is reachable from point P by a combination of reactions 
14a and 14b or 14b and 14c. Here, the thermodynamic 
constraints are such that the sum of reactions 14a and 14b 
(or 14b and 14c) is practically equivalent to reaction 14d. 
The third limiting trajectory, JQ, is given by reaction 14c, 
2CO -+ C 0 2  + C. It  is very slow at 500 K and in practive 
one tries to avoid it because it deactivates the shift catalyst. 

Also shown in the same plot are the sets of accessible 
compositions that can be reached starting from only steam 
and carbon at  500 K. This set is so small and so close to 
the line HzO-F1 that it is impossible to draw it accurately 
on the scale of the figure. For practical purposes, it is 
represented by the line H20-F,. Point J has a higher 
overall steam conversion than any equilibrium point based 
on reaction 14d alone in the temperature range 500-1200 
K (these are shown as points F,, F2, and FJ. However, 
the mixture a t  point J still contains significant amounts 
of CO. In practice, most of the CO is shifted to C 0 2  by 
adding steam to the mixture at point E and moving the 
composition to point E’, which now can be shifted to point 
J’. Note that, at the point J’, the CO yield is very small 
and COz removal will lead to almost pure Ha. This allows 
one to achieve a high conversion of the total steam into 
Hz and C 0 2 .  Kinetically, this step is also possible because 
at 500 K reaction 14b is very fast compared to reactions 
14a and 14c. 

The above example illustrates that, in a multicomponent 
system, the ability to vary the temperature increases the 
accessible composition space and the permissible trajec- 
tories over those that exist in an isothermal system of the 
same dimension in compound space. These additional 
permitted trajectories may allow one to improve the yield 
of the desired product. This principle is widely used in 
chemical reactor technology. 

The gasification of carbon also provides a convenient 
example of a three-dimensional system to further illustrate 
the methodology outlined in this paper. A detailed dis- 
cussion for the technical implications of this case can be 
found in Shinnar et al., (1982). If carbon is gasified with 
steam at  a temperature below 1300 K, methane is also 
formed. Methane can also be formed from CO and H2 by 
the methanation reaction 

CO + 3Hz + CHI + H 2 0  (144 
Steam gasification and subsequent methane formation is 
the basis of most SNG processes (Shinnar et al., 1982). 
This leads to the overall reaction 

(140 
In SNG production, there is a great advantage in maxim- 
izing methane formation inside the gasification zone. 
Reaction 14f has a small heat of reaction, whereas reaction 
14a is strongly endothermic and reaction 14e is highly 
exothermic. Heat is expensive to transfer at high tem- 
perature. The heat requirements of the gasification reactor 
are reduced if both reactions occur simultaneously. 
Therefore, it is preferable to have a catalyst that directly 
promotes reaction 14f. A t  low temperatures the global 
equilibrium yield is mostly CHI and COz (see Figure 15). 
If a catalyst can be found that promotes any set of reac- 
tions that leads to formation of CHI and COz at  low tem- 
peratures, the mechanism of the catalytic reaction will have 
very little impact on the reachable composition space. At 
low temperatures the global equilibrium composition 
contains only small amounts of CO and H2 and therefore 

2C + 2HzO -+ CH, + C02 

co 

A 

Figure 14. Modification of accessible space in char gasification by 
nonisothermal trajectories (reaction system 14a, 14b, 14c). Shaded 
area-composition space accessible by the two-step process: (a) 
gasification at 1200 K reaching equilibrium point E; (b) cooling the 
producta to 500 K and continuing all reactions at 500 K; F,, F1, F, 
are the equilibrium points for the reaction C + 2H20 + C02 + 2H2 
at 500,1000, and 1200 K, respectively; trajectory EJ, shift reaction 
only, at 500 K; trajectory E’J’, equilibrium composition at 1200 K 
(E), diluted with pure steam (E’), and shifted at 500 K. 

sufficient reaction set which will correspond to both tra- 
jectories. The three-reaction set shown in Figure 12b is 
sufficient. One can now look at  two-member reaction 
subsets. Of the three possible subsets the only one meeting 
the necessary criteria is the set containing reaction 14a 
(water gas reaction) and reaction 14b (the shift reaction). 
Reaction 14c is not required for this minimum or kineti- 
cally independent set. In practice it is included because 
there is independent evidence for its occurrence which can 
be obtained by gasifying carbon with COz, where it is the 
only possible overall reaction. However, any of the pub- 
lished data can always be fitted by the first two reactions 
(14a and 14b). In the same way one could also include 
reaction 14d in a set used for fitting these trajectories. 
Trajectories P and R provide evidence only that reaction 
14d is not needed and, therefore, must be slow compared 
to reaction 14a. Fled trajectories cannot provide conclusive 
evidence whether the reaction occurs or not. The example 
illustrates all the points made in the previous section. 

One can use the same example to illustrate another 
important point, namely, the way in which thermodynamic 
constraints imposed by catalysts can be modified by using 
a nonisothermal reactor. In the above example, in an 
isothermal reactor (14d) is not the dominant reaction, and 
therefore large amounts of CO will be formed. As the 
desired product is hydrogen, we are really interested in 
exclusively promoting reaction 14d if that is possible. This 
cahnot be done in a single reactor but can be achieved in 
two step.  In practice what is done in hydrogen production 
is to try to reach global equilibrium at  high temperature 
and then to cool the mixture and to shift it  at lower tem- 
perature in a separate shift reactor using a separate shift 
catalyst. Let us look at  this procedure in terms of our 
thermodynamic constraints. 

Figure 14 shows the accessible space that can be reached 
from point E in Figure 13 at 500 K, the lowest temperature 
used for shift, using only reactions 14a, 14b, and 14c. One 
limiting trajectory is the shift reaction 14b, which occurs 
along the line EJ. This reaction is achievable and reaches 
the greatest Hz yield of any point reachable from point E. 
The other limiting trajectory is determined by reaction 14a, 
CO + Hz F= C + HzO and is given by the line EP. Point 
P is actually slightly removed from the line Hz0-CO2, but 
is so close that the difference cannot be plotted on an 
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Figure 15. Product yields at equilibrium for the steam-carbon 
gasification system; products formed are CH,, CO, COB, H2, and H20. 
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Figure 16. Kinetic trajectories for catalytic (K,CO,) steam gasifi- 
cation of char (Shinnar et al., 1982). 

all trajectories will be close to that promoted by (14f). 
Unfortunately, no such catalyst is available. Figure 16 
shows an experimental trajectory for the best available 
catalyst (K2C03 from Exxon, 1978). 

In this example one is dealing with six compounds, three 
element balances, and three independent stoichiometric 
reactions. However, as it was assumed that carbon con- 
version in the reactor is incomplete, two element balances 
(or two triangular composition diagrams) are sufficient to 
describe the system completely. While such a presentation 
allows easy plotting of any trajectory, it is harder to present 
limiting surfaces as these are two-dimensional. We will 
limit ourselves to the following simple problem. One can 
find minimum sets of reactions consistent with the ex- 
perimental trajectory given in Figure 16 by writing down 
different sets and verifying their consistency with the 
trajectory using eq 7b. Several such sets are given in Table 
I. The experimental trajectory is consistent with either 
set A or B in both of which the primary reaction gasifying 
carbon is reaction 14a. The data are not consistent with 
either set D or E, which omit reaction 14a. 

The data are also consistent with set F, which contains 
both primary gasification reactions. The fact that one can 
form a sufficient set without using any of the primary 
gasification reactions in sets D and E is of interest to the 
kineticist and sheds some light on the possible mechanism. 

For purposes of kinetic fitting, the most likely set is C, 
which includes all reactions included in A and B. If one 
knows which reactions occur and has independent esti- 
mates for reaction rates, there is no need to limit oneself 
to a minimum set of reactions. Sets A, B, and C have a 
common property. The maximum yield of CH, per mole 
of steam is at global equilibrium, which for these sets gives 

Table I. Alternative Sets of Reactions for 
Steam Gasification of Carbon 
C +  H , O + C O +  H, 

CO 

CO + 3H2 + CH, + H,O 

C t H , O + C O  t H, 

CO t H,O + CO, t H, 

C + 2H, + CH, 

Set A Set B 

H,O + CO, t H, 

CO + H,O 

CO t 3H, + CH, t H,O 

C + 2H, + CH, 

CO, + H, 2C + 2H,O + CH, + CO, 

CO t H,O + CO, + H, 

CO + 3H, + CH, + H,O 

c + co, + 2CO 

Set C Set D 

3C + 2H,O+CH, t 2CO 

CH, t H,O + C O  + 3H, 

CO + H,O f. CO, t H, 

2C + 2H,O*CH, + CO, 

CO t H,O+CO,  f H, 

CO + 3H, * CH, + H,O 

Set E Set F 

optimum gasifier conditions. 
Sets D and E are different because both permit methane 

yields that exceed that of global equilibrium and also allow 
high methane yield at  conditions where the overall heat 
of reaction is low. It  is possible that the basic gasification 
reactions in set D and E occur as independent kinetic 
reactions. The data in Figure 16 cannot be used to dis- 
prove this. However, it is not necessary to postulate these 
reactions in order to explain the data. The fact that the 
data are inconsistent with set D does imply that reaction 
14f is not the dominant gasification reaction. If it occurs 
it is slow compared to (14a). 

In the above example and the previous one, the mini- 
mum set of independent reactions used has the same di- 
mension as the minimum set of independent stoichiometric 
reactions. This is not always true as was shown in Figure 
2. However, while sets A, B, D, and E are all linearly 
independent, A and B are the only linearly independent 
sets which are also kinetically sufficient to describe the 
reported data. A and B contribute minimum sufficient sets 
which are also linearly independent. 

For efficient modeling of rate equations, it is important 
to have sets of reactions which are kinetically sufficient. 
Our method permits a fast check without any calculation 
of actual reaction rates. The method also provides for 
efficient screening of new catalysts. One is interested in 
a catalyst that promotes reaction 14f or 14g (set E, Table 
I). Initially, such a catalyst may not give a large methane 
yield, but if an experimental trajectory is consistent with 
sets D or E, this would indicate that the catalyst operates 
with a different mechanism than that of K2C03. A hy- 
pothetical trajectory is shown in Figure 16 that is con- 
sistent with set D. The most interesting catalysts in 
multiple reaction systems are always those that operate 
with different mechanisms because they provide a hope 
that with further development, they may give significantly 
improved results. The method presented here not only 
allows efficient and simple screening, but it also allows one 
to bound the likely improvements. The example also il- 
lustrates how to set up a set of reactions that are useful 
for reactor modeling. 
VIII. Effect of Mass Transfer on Thermodynamic 
Constraints 

In the previous sections the reacting phase was assumed 
to be locally uniform with no restrictions due to mass 
transfer. However, the results apply to heterogeneous 
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membranes can completely overcome thermodynamic 
constraints, which are the results of kinetic properties of 
catalysts. Matson (1981) has incorporated semiselective 
membranes into biochemical reactors and has shown that 
these reactors are able to reach a product composition not 
obtainable otherwise. 

We use a similar concept, removing syngas from the 
reactor, condensing the methanol by cooling it and racy- 
cling the syngas (Figure 17b). Unfortunately, these se- 
lective removal processes are either slow or energy inef- 
ficient. The scheme shown in Figure 17b is a highly in- 
efficient, energy intensive "membrane". A more efficient 
way to accomplish the same task is to use shape-selective 
zeolites (Weisz and Frillette, 1960). In shape-selective 
catalysts, pore size is very uniformly controlled and active 
sites are inside the pores. Diffusion into and out of the 
pores is, therefore, a strong function of the size and shape 
of the molecules, and the equivalent diffusion coefficients 
can vary by a factor of 1000 or more for molecules of 
different sizes. If one considers each active site as a mi- 
croreactor, then one has a reactor with selective feed and 
removal of reactants and products. Again, this has a strong 
effect on the constraints of reachable composition space 
discussed earlier as shown in Figure 18. 

Assume that for purposes of modeling we can represent 
the shape-selective catalyst as a reaction which is sheilded 
from the outside by a semipermeable membrane. This 
model is illustrated in Figure 18b. Only a limited number 
of reactants can enter, and only specific products can leave. 
If one is dealing with a single reaction as in Figure 17, this 
arrangement has no effect on conversion. In that sense, 
it is inferior to a true semipermeable membrane. However, 
in more complex reaction systems, there are strong po- 
tential advantages for such a catalyst. Consider the case 
described in eq 3, and assume that the only reactions oc- 
curring with a significant rate are A + B and B + C. In 
a uniformly accessible reactor, the set of compositions 
reachable from pure A is contained in the triangle AEF 
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Figure 18. (a) Simplified model for shape selective catalyst. (b) A semipermeable membrane model equivalent to a shape selective catalyst. 
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in Figure 5. What happens inside the catalyst pore of 
Figure 18a? If all transport processes are equal, the dif- 
fusional resistance of the catalyst pore will not change the 
reachable space. If the transport processes are very slow, 
all trajectories will converge to the line AE, regardless of 
kinetics. 

Consider the case where A and C can diffuse rapidly but 
B has a zero diffusion rate inside the pore and therefore 
cannot escape from the pore. One can analyze this effect 
by looking a t  the equivalent case described by Figure 1%. 
The diffusion rates inside the pore can be replaced by 
transport coefficients through the membrane (hA, hg, hc). 
The difference in diffusion rates is equivalent to saying 
that the membrane is selective such that hA and hc are 
much larger than hg. As long as the system is not in 
equilibrium, A will diffuse into the pore and C will diffuse 
out of it but B will stay inside the pore. The overall re- 
action observed outside the pore is A + C, which is on the 
line AH in Figure 5. This trajectory, while permissible by 
free energy considerations, is totally inaccessible with the 
same catalyst if the catalytic sites are uniformly accessible 
by all reactants and products. 

In practice, the diffusivity of B will not be zero, but it 
could be several magnitudes smaller than that of A or of 
C. Any strong difference will modify the permissible 
trajectories and the accessible composition space. The 
transport processes inside a shape-selective catalyst are 
too complex to be described by simple overall diffusion 
processes, but a simple overall diffusion model illustrates 
the way in which they modify the thermodynamic con- 
straints of regular catalysts. Such selective transport 
processes may exist in other catalysts too, but shape-se- 
lective catalysts utilize them in a more efficient manner. 

An example of the way such a catalyst modifies the set 
of accessible compositions is described by Chen et al. 
(1979) and Wei (1982). Toluene is alkylated over a 
shape-selective zeolite with methanol to give xylene. In 
a regular zeolite catalyst the alkylation reaction results 
directly in an equilibrium mixture of all three isomers of 
xylene. If the para isomer is preferentially desired, it has 
to be separated from the mixture, which will be isomerized 
again. Zeolite catalysts used for alkylation reactions are 
also good isomerization catalysts. If this reaction is carried 
out over a shape-selective zeolite, the reaction goes selec- 
tively to pure p-xylene. An equilibrium mixture is still 
formed a t  the active site inside the pore, but p-xylene can 
diffuse out of the pore much faster than the other two 
xylene isomers. This upsets the equilibrium inside the 
pore. If transport processes are slow compared to the 
isomerization reaction itself, the removed para isomer is 
continuously replaced by further reaction of the two other 
isomers. With a truly semipermeable membrane that re- 
moves only p-xylene and water, the reaction could be 
driven to completion. Use of the shape-selective catalyst 
allows one, at  least in theory, to reach the equilibrium 
composition of the reaction 
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C7Hs + CHBOH + P - C ~ H , ~  + H20 
In practice one would have to be content with somewhat 
lower selectivity as the membrane is imperfect and the 
diffusion rate of the undesired product is small but not 
zero. The importance of shape-selective zeolites is that 
they allow better selectivity and admit effective reaction 
pathways that would not be permitted if the same catalysts 
were uniformly accessible. 

Consider, for example, the case shown in Figure 5.  The 
constants are modified in such a way that the global 
equilibrium contains only traces of C, despite the fact that 
KAC is large. Again one assumes that the only reactions 

i A 
C 

A-B P 

Figure 19. Monomolecular reaction system (A, B, C )  with KAB = 
10, K B C  = 0.1, and initial composition pure A area AFE, composi- 
tion space accessible by regular catalyst; AHEF, composition space 
accessible by shape selective catalyst; AHIJF, composition space 
theoretically reachable by combination of shape selective and regular 
catalysts where reaction rates KAB and KBc may be arbitrarily vaired. 

are A + B and B + C. In a uniformly accessible catalyst 
the set of reachable concentrations of species C is very 
small (see Figure 19, point E). To obtain large concen- 
trations of C one must find a catalyst that directly pro- 
motes A * C. Shape-selective catalysts provide an al- 
ternative way to achieve exactly the same goal without 
changing the nature of the catalytic reaction a t  the active 
site. If one places the catalytic sites inside a shape-selective 
pore from which C escapes preferentially compared to B, 
the reaction will be driven toward more C. This is 
equivalent to fiiding a catalyst that promotes the reaction 
A + C directly. The changes in the accessible composition 
space are shown in Figure 19. Clearly, one cannot drive 
reactions into a direction forbidden by overall free energy 
considerations. However, selective transport processes 
remove thermodynamic restrictions that are due to the 
nature of the catalyst. 

In a single reaction the equilibrium constraint is not due 
to the second law. In Figure l a  pure B has the same free 
energy as pure A. However, the reaction A + B cannot 
reach pure B from pure A as the trajectory has a minimum 
a t  point F. This constraint is a result of free energy to- 
pography of the kinetically and stoichiometrically acces- 
sible composition space. A semipermeable membrane 
removes this constraint and changes it to the hard ther- 
modynamic constraint that free energy must decrease. 
Shape selective catalysts also modify thermodynamic 
constraints but in a different way. In Figure 5 the re- 
striction that the accessible composition space was the 
triangle AEF was not a hard constraint, in the sense of an 
unavoidable consequence of the second law, but a ther- 
modynamic consequence of the kinetic properties of the 
catalyst. A shape-selective catalyst can remove constraints 
due to kinetic pathways and is completely equivalent to 
finding a catalyst that promotes a different set of reactions. 
It therefore opens completely new avenues for developing 
new catalysts. 

Shape-selective catalysts cannot remove topographical 
constraints in the composition space in the same ways that 
truly semipermeable membranes do. All permissible 
overall reaction trajectories must fulfill the criterion that 
the free energy decreases along the trajectory. However, 
they have the advantage of being cheaper and allowing fast 
overall reactions. In that sense, shape selective catalysts 
immitate nature. A large fraction of the catalysts utilized 
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trajectories. From this one can derive bounds on the ki- 
netically accessible composition space. If a single com- 
position obtained via a new modified catalyst falls outside 
this space, the catalyst has novel properties that should 
be further investigated. The beauty of this method is that 
it avoids complex trajectory computations and combines 
existing kinetic information with available thermodynamic 
data. This can be a powerful tool for analyzing complex 
reactions and will be discussed in more detail in a subse- 
quent paper. 

Such andyses provide a structured engineering approach 
to development problems. The chemical engineer relies 
heavily on multistage processes, each at  a different tem- 
perature. Temperature and pressure are used to overcome 
thermodynamic constraints. One can look at temperature 
as an additional dimension in compound space which 
provides new permissible pathways. Nature operates 
isothermally and achieves its high efficiency and selectivity 
in several ways: (a) coupling of reactions via common 
intermediates, (b) enlargement of the compound space, and 
(c) embedding catalysts (enzymes) inside semipermeable 
selective membranes. Coupling of reactions is a very ef- 
ficient tool for transfer of free energy between two reac- 
tions. I t  occurs when the detailed mechanism or reaction 
path involves a common intermediate, thus creating a 
permissible trajectory along which the free energy de- 
creases. The concentration of the common intermediate 
is not important. The nature of the reaction mechanism 
strongly determines the practical thermodynamic con- 
straints of a system. In that sense catalysis affects ther- 
modynamics. While chemical engineers make use of cou- 
pling in some reactions (“OXO” intermediates are an exam- 
ple), its use is still limited and may justify greater atten- 

‘ tion. 
Use of selective membranes is now finding increased 

attention in catalysis. The most interesting and probably 
most important recent innovation in catalysis, shape-se- 
lective catalysts, is based on this principle. The catalytic 
site is embedded in a narrow uniform pore, in which mass 
transfer processes depend on molecular size a-id shape. 
Such selective mass transfer processes strongly modify the 
thermodynamic constraints imposed by the nature of the 
catalytic sites. Understanding these constraints can pro- 
vide a conceptual framework and an efficient tool for 
further advances in the development of new catalysts. 
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modynamic constraints or kinetic trajectories. This should 
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it offers an understandable approach to the modification 
of catalysts to improve selectivity and yields. 

IX. Discussion and Summary 
The main goal of this paper was to investigate and 

demonstrate the usefulness of thermodynamic analysis in 
chemical reaction engineering, especially in the study of 
catalytic reactions. Some aspects of thermodynamic 
analysis, such as computation of global equilibrium, are 
well known. Thermodynamics is a powerful tool for in- 
vestigating the impact of design decisions (or design al- 
ternatives) in power plants, turbines, and engines. Prop- 
erly used, it can be just as powerful a tool in the study of 
chemical reactions and chemical reactors. One must al- 
ways remember that, in practice, one is dealing with 
thermodynamics in the context of other outside con- 
straints, whereas energy analysis is thermodynamics 
without any outside constraints. The properties of a 
catalyst limit the accessible composition space at different 
temperatures and pressures far more than the demand of 
decreasing free energy. While these constraints are kinetic 
in nature, thermodynamics allows one to obtain reliable 
bounds in a simple way. The bounds can be computed 
from a minimum amount of kinetic information. All that 
one needs to know is the overall stoichiometry of the ac- 
tually occurring ostensible or overall chemical reactions. 

The main concept that allows us to derive such bounds 
is the demand that every independent chemical reaction 
must proceed in the direction of decreasing free energy. 
The only way that one reaction can “transfer its free 
energy” to another reaction is via heat transfer. This 
introduces severe constraints on the accessible composition 
space. A simple method was presented to evaluate the 
consequences of this constraint. This method can be used 
in two ways. If one knows what reactions actually occur, 
one can derive bounds on catalyst performance. On the 
other hand, if one has the experimental trajectories, one 
can use thermodynamic data to derive minimum sets of 
kinetic reactions that are consistent with the experimental 
results. 

This is an important problem in studying and modeling 
complex chemical reactions. One knows, a priori, that 
usually one is not describing molecular events, but rather 
overall complex events, each probably involving many in- 
termediates. There are methods for choosing a set of 
independent stoichiometric relations to describe all 
changes. However, such a set is not necessarily suitable 
for deriving kinetic rate expressions. In many cases, real 
trajectories cannot be fitted this way. The rate expressions 
obtained would result in some individual reactions going 
in the directions of increasing free energy. This paper 
outlines a method for obtaining sets of chemical reactions 
for the study of rate equations and for testing in a simple 
way whether these sets are in agreement with all known 
trajectories. All trajectories should be realizable from this 
set of reactions without violating the free energy constraint. 
This method should provide an efficient tool in setting up 
empirical rate equations in multicompound systems. 

This approach should also have important implications 
for screening of new catalysts. For a given catalyst, an 
appropriate set of ostensible reactions describing its kinetic 
properties can be established from experimental reaction 
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Fluid Mechanics of Mixing in a Single-Screw Extruder 
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An analysis is presented of mixing in cavity flows and in the single-screw extruder, valid for realistic degrees of 
mixing (stretching). The limitations of conventional numerical tracking schemes and the general characteristics 
of flows with weak reorientation are discussed. The analysis gives insight into the physics of the process and 
suggests ways for improved operation by highlighting the rote of operating conditions, the mode of feed introduction, 
and the role of mixing sections. 

Introduction 
The objective of this work is to present and analyze a 

detailed physical model of mixing in a single-screw ex- 
truder. For simplicity our results will be presented in 
terms of a Newtonian fluid, but the extension to other 
constitutive models should be clear. When possible, our 
results will be compared with experimental observations 
and other theoretical analyses. However, one of the main 
problems of mixing research is the almost total absence 
of systematic experimental work. (For a review of laminar 
mixing of polymeric fluids see Ottino and Chella, 1983; the 
existing experimental work relevant to extruders is re- 
viewed by Arimond, 1984.) From a general viewpoint, 
there are two principal conceptual problems: (i) how to 
measure mixing, and (ii) how to implement the measure, 
Le., to relate the mixing measure to the velocity field. It 
is desirable that the analysis be valid, without breakdown 
or unreasonable computational requirements, up to real- 
istic degrees of mixing. 

Usually the starting point for the mixing of immiscible 
fluids is a two-phase system consisting of thick striations 
or large blobs. Mechanical mixing causes the striation 
thicknesses to decrease by several orders of magnitude 
(lo4). A decrease in length scales of segregation from 
centimeters to microns is reasonable, and eventually 
breakup into droplets or ribbons will occur (Figure 1). The 
stretching and breakup are related in a complicated way 
to the velocity field. 

According to Aref and Tryggvason (1984), the mixing 
of immiscible fluids may be conveniently divided into two 
classes: mixing with passive and active interfaces. For 
passive interfaces, the motion is topological; i.e. there is 
no breakup, and the interfaces act as markers of the flow. 
In particular, this is the case of mixing of two immiscible 
fluids having similar properties and negligible interfacial 
tension. For active interfaces, generally occurring at small 
scales where interfacial forces become important, the in- 
terfaces interact with the flow and modify it. A conceptual 
representation of this process is shown in Figure 1. It  is 
convenient to describe mixing in terms of deformation and 
stretching of passive interfaces and then to add at a small 
scale the effect of active interfaces (Khakhar et al., 1984). 
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Given these definitions, the scope of this work (a) and 
its possible generalizations (b) are given respectively as 
follows: (1) (a) similar Newtonian fluids; (b) non-Newto- 
nian fluids: trivial provided that the velocity field can be 
obtained; (2) (a) passive interfaces; (b) active interfaces: 
deformation and breakup can be added at  a small scale 
(see Khakhar et al., 1984); (3) (a) immiscible fluids; (b) 
diffusing and reacting fluids: can be treated in terms of 
the lamellar model (see Chella and Ottino, 1982, for re- 
actions in an extruder; different reaction schemes are 
treated by Chella and Ottino, 1984). 

There are several goals to the present work. In a narrow 
sense the objective is to use the single-screw extruder, a 
prototype case of mixing in a reasonably complicated flow 
field, as a test ground for the application of the lamellar 
mixing model (Ottino et al., 1981). However, the bypro- 
ducts of the application are equally important. We provide 
new insights into the physics and guidance for improved 
operation. We will be able to compare our approach with 
other methods: the use of Weighted Average Total Strain 
(WATS) to model mixing in extruders, the Murker-and- 
Cell technique (MAC) to describe mixing in cavity flows, 
and general numerical methods based on tracking inter- 
faces by means of small displacements. 

The Marker-and-Cell technique provides a good means 
of dispelling a commonly held belief that once the velocity 
field is obtained, the mixing problem is essentially solved. 
This is far from being true, and actually fairly simple, 
deterministic, flows can 1ead.b extremely intricate, chaotic, 
mixing patterns (Aref, 1984; Khakhar et al., 1984). Al- 
though we do not consider chaotic mixing here, calculating 
large degrees of mixing in the extruder flow can easily 
exceed computational limits. 
Laminar Mixing 

One of the earliest theoretical treatments of laminar 
mixing was by Spencer and Wiley (1951). They found that 
the deformation of an interface subject to large unidirec- 
tional shear is proportional to the imposed strain, the 
proportionality constant being a function of the initial 
orientation. This result has been empirically extrapolated 
to the analyses of mixing in the extruder (Mohr et al., 1957; 
McKelvey, 1962; Pinto and Tadmor, 1970; Erwin, 1978). 
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