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Abstract	 The possibility is substantiated to model open and closed systems 
as well as reversible and irreversible processes on the basis of classic 
equilibrium thermodynamics statements. The consideration is given 
to new modifications of the model of extreme intermediate states 
(MEIS) built originally in the mid-1980s. They include constraints on 
irreversible macroscopic kinetics presented in a thermodynamic 
form, i.e., without the time variable. MEIS is compared with models 
of chemical kinetics and irreversible thermodynamics from two 
viewpoints: (1) the range and versatility of application areas, and 
(2) the simplicity and self-descriptiveness of computational experi­
ments. The potential of equilibrium modeling is explained on the 
examples of analysis of chemical systems and hydraulic circuits. 

1. INTRODUCTION 

The subject of the studies to be discussed is modeling of macroscopic 
dissipative systems on the basis of the classical equilibrium thermody­
namics principles. The modeling tool is the model of extreme intermediate 
states (MEIS) suggested in the mid-1980s at the Melentiev Energy Systems 
Institute of Siberian Branch of Russian Academy of Sciences (Antsiferov 
et al., 1987; Gorban et al., 2001, 2006; Kaganovich et al., 1989, 1993, 1995) 
and which, unlike the traditional thermodynamic models intended for 
search of the final equilibrium point, allows one to study the entire 
attainability region from a given initial state of the studied system and 
find a point of partial or complete equilibrium that corresponds to the 
extreme value of a property the researcher is interested in (for example, 
concentration of target or harmful products of the processes that may 



3 Equilibrium Thermodynamic Modeling of Dissipative Macroscopic Systems 

occur in the system). Various modifications of MEIS have been created 
over the past years. They include the constraints on irreversible macro­
scopic kinetics that are written in thermodynamic form (without time 
variable) (Gorban et al., 2006; Kaganovich, 2002; Kaganovich et al., 2004, 
2005a, 2005b, 2006a, 2006b, 2006c). 

The equilibrium modeling of reversible and irreversible processes has 
been a traditional approach for studies in the natural science (and since the 
mid-19th century in the social and economic sciences as well). The theore­
tical foundations of this approach were laid by Galileo whose principles of 
equilibrium, relativity, and inertia showed that the motion could be repre­
sented as a sequence of states of rest (equilibrium). The formalized analy­
sis of equilibrium models was mostly carried out in the 18th century, first 
of all in the works by Euler and Lagrange. Lagrange using his equilibrium 
equation gave a single mathematical description for the entire Newton 
mechanics (Lagrange, 1997). Revealing the interrelations between the 
models of motion and rest resulted in creation of mathematical disciplines 
and methods related to the solution of variational and extreme 
problems: the method of multipliers, the theory of optimal equilibrium 
trajectories—calculus of variations and, later, the modern mathematical 
theory of extreme equilibrium states—mathematical programming (MP). 

In the 19th century the variational principles of mechanics were 
extended to the analysis of nonconservative, nonholonomic, and nonscler­
onomous systems. However, the greatest progress in equilibrium model­
ing in the century before last is certainly connected with the science about 
equilibrium—the thermodynamics—created by Clausius, Helmholtz, 
Maxwell, Boltzmann, and Gibbs. Owing to thermodynamics the extreme 
principle—the principle of entropy increase (the second law of thermo­
dynamics) came into physics. It is more general compared with the prin­
ciples of virtual work and of least action that were formulated in 
mechanics. Boltzmann explained this law in two ways (Boltzmann, 1878; 
Polak, 1987): (1) from the motion trajectory analysis (kinetic) formulated as 
the H-theorem and (2) from the immediate consideration of possible states 
of a system and determination of the most probable among them. This 
explanation facilitated further analysis of interrelations between the mod­
els of motion and rest as interrelations between kinetics and thermody­
namics. The assumptions on the Markov random behavior of processes of 
motion toward entropy maximum and on existence of the thermodynamic 
Lyapunov functions (without using the corresponding terms, of course), 
which had been made by Boltzmann in his research even before Markov 
and Lyapunov, became the foundation for the development of equilibrium 
modeling of diverse processes including irreversible natural ones. 

However, with successful penetration of equilibrium models into 
physics, chemistry, biology, and social sciences in the 20th century, largely 
because of the need to study various nonlinear effects (self-oscillations, 
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self-organization), special sciences started to develop: the theory of 
dynamic systems (Arnold, 1989; Katok and Hasselblatt, 1997), nonequili­
brium thermodynamics (Glansdorff et al., 1971; Kondepudi et al., 2000; 
Prigogine, 1967), synergetics (Haken, 1983, 1988) and others which are 
intended either completely or partly for the analysis of nonequilibrium 
irreversible processes. The “seizure” of a considerable part of the applica­
tion area of equilibrium thermodynamics by other sciences was fostered 
by two conditions: First, is it due to the contradiction in the Boltzmann 
explanation of the second law which lies between the following supposi­
tions: on the one hand, reversibility of the individual interactions among 
micro particles and, on the other hand, irreversibility of the final result of 
all these interactions in the aggregate (the Boltzmann paradox). Second, it 
is because of a wide discussion of the mentioned contradiction which 
unfolded at the turn of the 20th century. Now the opinion that “Classical 
thermodynamics gives a complete quantitative description of equilibrium 
(reversible) processes,… for nonequilibrium processes it establishes only 
the inequalities which indicate the direction of these processes (for exam­
ple, the Clausius inequality)” (Zubarev, 1998) has become widespread. 

The MEIS developers relying on the capabilities of modern computers 
and computational mathematics started the work whichresulted in an 
essential expansion of the application area of “good, old” classical thermo­
dynamics and in the possibility to study (using thermodynamics) any 
states on all possible motion trajectories of a nonequilibrium system. In 
other words, they put forward the goal to use the models of equilibrium 
not only to determine the directions of irreversible processes but to esti­
mate the attainability of desired and undesired states on these directions. 

The works on equilibrium modeling of dissipative systems include 
four natural components: 

1.	 substantiation of the possibility to describe irreversible processes in 
terms of equilibrium; 

2.	 creation of quite a representative set of models (modifications of a 
general equilibrium model) to enable the analysis of a wide range of 
problems interesting in terms of theory and application; 

3.	 comparison of advantages and disadvantages of equilibrium and 
nonequilibrium models and differentiation of the areas of their 
effective applications; 

4.	 solving as many as possible specific problems and analysis of the 
modeling experience gained. 

The above four topics of studies are subsequently discussed below. In 
creation of MEIS its authors have used as a base the ideas of their collea­
gues in studies of equilibria—those by Bykov, Gorban, and Yablonsky 
(Gorban, 1979, 1984, 1986; Yablonsky et al., 1991), as well as works by 
Horn (1964; Horn and Jackson, 1972), Feinberg (1972, 1999; Feinberg and 
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Hildebrant, 1997; Feinberg and Horn, 1974), Shinnar (1988; Shinnar and 
Feng, 1985) and other scientists who dealt with thermodynamic analysis of 
macroscopic systems kinetics and attainable states and areas research. In 
development of the latest MEIS modifications intended for modeling of 
irreversible processes we have utilized the equilibrium trajectory interpre­
tations suggested by Gorban (2007; Gorban and Karlin, 2005; Gorban et al., 
2001), which in turn are based on elaboration of Erenfests’ idea on 
coarse-graining phase spaces (Ehrenfest, 1959). Besides, the study being 
presented has been strongly influenced by the works by Gorban on 
“Model Engineering”—a new scientific discipline formulated in Gorban 
and Karlin (2005) and further unfolded in Gorban (2007; Gorban et al., 
2007). Whereas mathematicians often use formalized statements of pro­
blems that were suggested in other sciences and, then, based on the study 
of mathematical features develop the methods of their solution, the “Model 
Engineering” supposes the choice of the initial models which are most 
suitable in terms of both analysis and computation. The research area 
presented below fits naturally into this new discipline and represents a 
limit case of reduction, i.e., the transformation of models of motion into 
models of rest (equilibrium). 

2. SUBSTANTIATION OF THE EQUILIBRIUM 
THERMODYNAMICS CAPABILITIES FOR DESCRIBING 
IRREVERSIBLE PROCESSES 

2.1 The experience of classics 

Great experience in equilibrium modeling of irreversible processes was 
gained even in the classical mechanics. Lagrange, analyzing the specific 
features of the equilibrium search problems (Lagrange, 1997), stated that if 
the left-hand side of his equation of the mechanical system equilibrium 
represents a total differential of some function, then the solution to the 
problem of determining the equilibrium corresponds to the solution to the 
problem of finding the extremum of this function. Thus, he assumed that 
the cases were possible where the equilibria are attained between non-
differentiable variables. The assumption on the equilibrium of mechanical 
systems that was made by him in a formalized description of the Newton 
mechanics appeared to be more general than the assumption on the 
conservatism of these systems that was in fact used by Newton and 
Leibniz for creation of the differential calculus. While the conservatism is 
a sufficient but not necessary condition of the possibility to describe the 
system behavior with the help of differential equations, the equilibrium is 
a necessary condition for admissibility of such a description. Indeed, the 
nonequilibrium systems cannot be described by intensive macroscopic 
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parameters which are the functions of states and the notion of the function 
differential for such systems loses its sense. 

In the 19th century the variational principles of mechanics that allow 
one to determine the extreme equilibrium (passing through the continuous 
sequence of equilibrium states) trajectories, as was noted in the introduc­
tion, were extended to the description of nonconservative systems (Polak, 
1960), i.e., the systems in which irreversibility of the processes occurs. 
However, the analysis of interrelations between the notions of “equili­
brium” and “reversibility,” “equilibrium processes” and “reversible pro­
cesses” started only during the period when the classical equilibrium 
thermodynamics was created by Clausius, Helmholtz, Maxwell, Boltz­
mann, and Gibbs. Boltzmann (1878) and Gibbs (1876, 1878, 1902) started 
to use the terms of equilibria to describe the processes that satisfy the 
entropy increase principle and follow the “time arrow.” 

The principle of entropy increase was explained by Boltzmann in two 
ways: (1) by analyzing the feasible paths (H-theorem) and (2) by consider­
ing the possible attainable states of thermodynamic system and searching 
for the most probable ones among them. In both explanations he made 
assumptions on the independence of the considered states from the attain­
ment prehistory and the possibility of their full description on the basis of 
functions, determined exclusively by the probability of fulfillment, and 
changing monotonously in the process of transitions from state to state. 
Using modern terms we can say that Boltzmann presupposed the Markov 
behavior of processes taking place and the existence of the Lyapunov 
functions. In turn the possibility to represent the states by a set of quantity 
related only to the probability of attainment implies that such a state can 
be interpreted as partial or complete equilibria. Indeed, fixing some quan­
tity (function) can be easily explained by equilibrium of the forces tending 
to change it. This makes clear both the equilibrium of the Boltzmann 
trajectories of attaining the entropy maximum and the “equilibrium” of 
the Boltzmann descriptions of irreversible processes. Boltzmann’s expla­
nations reveal to a great extent the interrelations between thermodynamics 
and kinetics and the possibilities of thermodynamic equilibrium analysis 
of kinetic equations, i.e., the equations of motion. 

Gibbs in his system explanation of macroscopic thermodynamics 
(Gibbs, 1876), which had been made before he and Boltzmann formulated 
the principles of statistical mechanics, relied on the Lagrange equilibrium 
description of mechanical systems. However, instead of the single 
Lagrange equilibrium equation, which, according to Krylov, included all 
Newton mechanics, Gibbs, in order to derive all thermodynamic relation­
ships, used four fundamental equations written for different combinations 
of independent parameters. Thus, not ordinary but partial differential 
equations became the mathematical apparatus of thermodynamics unlike 
mechanics. Owing to thermodynamics, a more general, compared with the 
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mechanical principles, the extreme principle, i.e., the second law of ther­
modynamics, appeared in the science. For trajectories it determined the 
entropy nondecrease instead of action minimization (according to the least 
action principle) and for states—instead of the virtual work principle the 
entropy maximum: global for complete equilibrium and conditional 
(under the condition of braking all the processes that can continue after 
the given state is attained)—for partial equilibria. 

Gibbs conducted the specific studies on the basis of mathematical 
relations obtained. These studies focused on the complex systems, sub­
jected to the action of various forces (chemical, electrical, gravitational, 
surface tension, and elastic), and the systems in which there can be sub­
stance transformations and phase transitions along with energy transfor­
mations. In these studies Gibbs used the method of potentials which 
supposed equilibrium trajectories of attaining the sought equilibrium 
states. Gibbs, without using time variable, distinguished the approximate 
equilibria which settle fast and the final equilibrium which is slowly 
attained. Not considering the computational problems proper he foresaw 
the relations between physical stability and uniqueness of the final equili­
brium point. In terms of the art of equilibrium modeling of irreversible 
processes the analysis of the process of hydrogen burning in oxygen 
(Gibbs, 1876) is particularly impressive. Gibbs, without information on 
thermodynamic properties of substances and without computers, mana­
ged to draw a complete qualitative picture of this process. Discussing 
potential solutions to the system of equations he explained the decrease 
in reaction temperature due to water dissociation and the presence of 
constrained explosibility and ignition regions. Certainly, he could not 
find the chain mechanism of the considered reaction but the probable 
results of the studied processes for different conditions under which 
these processes occur Gibbs showed absolutely correctly. 

Discussing the period when the thermodynamic equilibrium descrip­
tions of various irreversible phenomena started one cannot but point out 
the papers on the theory of electric circuits that are of explicitly thermo­
dynamic character. These had been written by Kirchhoff (1848, 1882) 
before the works by Clausius and Boltzmann, which made the second 
law the property of science. In his work (Kirchhoff, 1848)(yet in 1848!) 
Kirchhoff proved the theorem on minimum heat production in the open 
passive (without electromotive force sources) electric circuit for the case of 
isothermal motion of charges. It is easy to ascertain that this theorem 
represents a particular case of the nonequilibrium thermodynamics theo­
rem on minimum entropy production that was proved by Onsager and 
Prigogine approximately 100 years after Kirchhoff. In the 1870s Rayleigh 
suggested the principle of the least energy dissipation (Rayleigh, 1873). 

Following the founders of thermodynamics, Planck and Einstein pre­
sented vivid illustrations of the possibilities to analyze irreversible 
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processes in terms of equilibrium. Taking into consideration the condition 
of equilibrium between substance and radiation and the condition of 
equilibrium energy transfer, they derived the laws of light radiation, 
propagation, and absorption. As is known their works were the develop­
ment and brilliant completion of the radiation thermodynamics works by 
Kirchhoff and Boltzmann. In the papers dedicated to the Brownian motion 
Einstein, proceeding from the equations of equilibrium between the 
Brownian particle and carrying fluid, derived the law of Fick for a princi­
pally irreversible process, i.e., diffusion. In the theories of fluctuations and 
opalescence Einstein “broke into” the fields of applications of modern 
nonequilibrium thermodynamics. He introduced the notion of partial 
equilibria (in his terms “incompletely determined in the phenomenologi­
cal sense of the word”) in the analysis of opalescence phenomenon and 
used this notion to explain the irreversible process of light diffusion, 
considering, in fact, a set of attainable states. 

In the second half of the 20th century it is precisely the classical 
equilibrium thermodynamics that became a basis for the creation of 
numerous computing systems for analysis of irreversible processes in 
complex open technical and natural systems as applied to the solution of 
theoretical and applied problems in various fields. The methods of MP, 
i.e., the mathematical discipline that emerged from the Lagrange interpre­
tation of the equilibrium state, were a main computational tool employed 
for the studies. 

2.2 New interpretations of equilibrium and reversibility 

In order to clearly explain the possibilities of describing nonequlibrium 
irreversible processes in terms of equilibrium it is certainly necessary 
to define quite accurately the notions of equilibrium and reversibility, 
nonequilibrium and irreversibility. It is clear that their interpretation, as 
well as the interpretation of other scientific notions, changes with the 
development of respective theories, models, and methods. Since the 
work touches upon the issues of interrelations between the competing 
models in a historical profile it is desirable that the appropriateness of 
various interpretations of the said notions be assessed in this profile. 
Making no pretence of the systematic presentation of the issue we will 
only touch upon some points that are important for understanding the 
text1 below. 

Mechanics emerged as a science studying reversible processes that are 
symmetrical relative to time. Euler, in his “thesis” on the least action 

1 A rich material for the comprehension of the evolution of basic notions in the course of development of 
variational principles and principles of equilibrium and extremality in physics can be found in remarkable 
books by L.S. Polak (1987, 1960). 
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principle, wrote that this principle did not hold for the systems with 
friction. Lagrange took the equilibrium equation as a basis for the for­
malization of mechanics and simultaneously made equilibrium a most 
important property of mechanical systems as well. This property 
appeared to be essentially more general than conservatism which is still 
believed to be the main feature that determines the obeyance of studied 
system to the classical mechanics laws. Relying on the Lagrange idea of 
equilibrium the mechanics (Hamilton, Gauss, Ostrogradsky et al.) started 
to gradually expand the area of their science applications to nonconser­
vative systems, allowing, obviously, some analysis errors. Boltzmann 
related the possibilities of equilibrium descriptions with the possibilities 
of describing irreversible processes. The Boltzmann trajectories of motion 
to the entropy maximum that meet the conditions of Markov behavior of 
the studied processes and the existence of the Lyapunov functions, as well 
as the Euler–Lagrange–Hamilton trajectories, can be represented by a 
continuous series of equilibrium states. It is convenient to characterize 
these states (points on trajectories) with the help of local potentials 
and to describe the trajectories themselves by autonomous equations of 
the form 

x_ ð Þ¼ f x : 

However, unfortunately, the definitions of equilibrium processes that 
relate them with the notion of irreversibility did not arise from the 
Boltzmann description of irreversible processes by equilibrium trajec­
tories. This was possibly to some extent a result of the discussion related 
to Boltzmann’s paradox, mentioned in the “Introduction.” To the contrary, 
in the 20th century the idea about the identity of equilibrium and rever­
sible processes grew strong. In the workbooks on macroscopic thermo­
dynamics equilibrium processes were interpreted as infinitely slow, in the 
course of which, at each time instant, equilibrium has time to settle within 
the system and between the system and the environment. If to implement 
such a process after attaining the final state in the reverse direction to the 
initial state, nothing will change in the system and in the environment, i.e., 
the results of the direct process will appear to be reversible. Such inter­
pretation of equilibrium processes fits harmoniously into the theories and 
models associated with the efficiency analysis of various technical sys­
tems. Indeed, any deviation of the system parameters from the equili­
brium values leads to additional potential differences between the 
system and the environment and additional work or heat loss, i.e., to a 
decrease in the working (target) process efficiency. 

However, the presented interpretation of equilibrium processes turns 
out to be unsatisfactory for the analysis of possibility to use 
equilibrium descriptions for irreversible phenomena. The interpretation 
of interrelations between equilibrium and reversibility that was given by 
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Gorban et al. in their works (Gorban, 2007; Gorban et al., 2001, 2006) seems 
to be more comprehensive for our discussion. The works unfolded the 
idea of the Ehrenfests (1959) on the isolated system tending toward the 
Boltzmann equilibrium trajectory as a result of “agitations.” 

Figure 1, taken with some changes from Gorban et al. (2001), illustrates 
the processes that occur in the isolated systems where the number of 
particles is so large that the statistical regularities take place. Closed curves 
represent the levels of entropy S. Dotted straight lines show the sets of 
states with constant values of macroscopic parameters. The contact points 
of the curves with straight lines are the equilibrium points that meet the 
equilibrium distributions. At these points entropy has its maximum value 
on a corresponding tangent. The set of these points forms the equilibrium 
trajectory S�, along which the system moves toward the point of global 
maximum of entropy Smax. Curve arrows stand for isentropic (reversible) 
processes that occur as a result of reversible (elastic) interactions of parti­
cles. Straight arrows show the system “agitations” that are explained by 
deviations of part of the interactions from reversibility and that push the 
system toward an equilibrium trajectory. 

According to the given interpretation of the equilibrium processes 
they differ principally from the reversible ones and represent at the limit 
(with the intervals between agitations and, hence, the distances 
S� 
1 � S� 

2; S2 
� � S� 

3; etc., tending to zero) a continuous sequence of local 
entropy maxima. 

The above statement on the identity of equilibrium and reversible 
processes is also consistent to some extent with the Gorban interpretation 
only in the assumption on the limiting coincidence of nonequilibrium 
states, located on the trajectories S = const, with equilibrium ones—on 
the Boltzmann trajectory. In this case the entire set of possible states in 

1 � SmaxFigure 1 is reduced to the curve S� . 

Figure 1 Dynamics of a system with periodic agitation. 
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It will apparently be possible to provide coordination between the 
capabilities of equilibrium models in (1) the analysis of perfection of 
the energy and substance transformation processes and (2) the analysis 
of different irreversible phenomena on the basis of dual interpretation of 
equilibrium processes as being both reversible and irreversible at a time. In 
the first case they are convenient for interpretation as reversible in terms of 
the system interaction with the environment and in the second case—as 
irreversible in terms of their inner content according to Gorban. It is clear 
that to explain the dual interpretation it is necessary to extend the analysis 
by Gorban to the nonisolated thermodynamic systems with other charac­
teristic functions to be used along with entropy. 

Concurrently with the joint analysis of the notions “equilibrium” and 
“irreversibility” we must determine in our discussion the meaning of and 
the extent to which the notion “nonequilibrium” and word combination 
“far from equilibrium” affect the requirements for the models employed. 
There are three meanings assigned to the indicated word combination in 
different contexts in Gorban (1984). Firstly, it is assigned to the systems in 
which distribution of some microscopic variables (for example, energy of 
particle translational motion) differs from the equilibrium distribution so 
much that the evolution of macroscopic variables cannot be described by 
the first-order differential equations (autonomous, if the environment is 
stationary). Secondly, the closed system with equilibrium environment (or 
isolated one) is supposed to be far from the equilibrium if its relaxation 
from the given state toward a small neighborhood of the equilibrium 
continues for a long time, during which various nonlinear effects can be 
observed (self-oscillations, spatial ordering, etc.). The third use of the word 
combination “far from equilibrium” refers to the open systems that 
exchange mass and energy with the environment which is not in the 
state of thermodynamic equilibrium. 

Normally the apparatus of equilibrium thermodynamics can be used for 
the remoteness in the second and third sense and a corresponding choice of 
space of variables, though in each specific case this calls for additional check. 
Because for the spaces that do not contain the functions of state (in the 
descriptions of nonequilibrium systems these are the spaces of work–time 
or heat–time) the notion of differential loses its sense, and transition to the 
spaces with differentiable variables requires that the holonomy of the corre­
sponding Pfaffian forms be proved. The principal difficulties in application 
of the equilibrium models arise in the case of remoteness from equilibrium in 
the first sense when the need appears to introduce additional variables and 
increase dimensionality of the problem solved. 

In some cases where it is impossible to strictly substantiate the 
feasibility of equilibrium descriptions we have to be content with equili­
brium approximations. Such approximations are considered below 
in Section 2.4. 
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2.3 Equilibrium interpretations of the basics of nonequilibrium 
thermodynamics 

We can specially show that the main principles of nonequilibrium thermo­
dynamics (the Onsager relations, the Prigogine theorem, symmetry princi­
ple) and other theories of motion (for example, theory of dynamic systems, 
synergetics, thermodynamic analysis of chemical kinetics) are observed in 
the MEIS-based equilibrium modeling. In order to do that, we will derive 
these statements from the principles of equilibrium thermodynamics. 

First of all relying directly on the second law we will try to give the 
interpretation of the Prigogine theorem. Taking into account that the tradi­
tional variables of equilibrium thermodynamics are the parameters of state 
and, wishing to reveal the formalized relations between both thermody­
namics, let us consider two situations sequentially: (1) when some para­
meters of interaction that hinder the attainment of final equilibrium between 
the open subsystem and other parts of the isolated system that contains this 
subsystem are set; (2) when flows are taken constant for the flow exchange 
between the open subsystem and the environment. It is obvious that both 
situations can be reduced to the case of fixing individual forces which is 
normally considered in the nonequilibrium thermodynamics. 

Studying the first situation let us assume, for example, that tempera­
ture T and pressure P are set. The state of the final equilibrium of the 
isolated system corresponds to 

Hin 
os �Hos ¼ Seqmax Sis ¼ Sos þ þ const ; ð1Þ

T 

where H—enthalpy; indices “is,” “os,” “in,” and “eq” refer to isolated 
system, open subsystem, initial state, and final equilibrium, respectively. 
The second term in the right-hand side of the equality in square brackets 
stands for entropy transferred from the open subsystem to the environment. 

Taking into account that 

Hos � GosSos ¼ ;
T 

where G—the Gibbs energy, and multiplying (1) by T, we obtain a trans­
formed criterion of equilibrium 

max TSis ¼ �Gos þHin :os 

Since Hin is constant, we find that max Sis corresponds to max(�Gos) and, os 
hence, to min Gos. In turn, attainment of the minimum possible value of 
the Gibbs energy means the largest feasible useful transformation and the 
minimum dissipation of the total energy, i.e., the minimum (in this case a 
zero one) entropy production in the open subsystem. 
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If owing to the external conditions the point of final equilibrium in this 
subsystem is not attained and the subsystem passes into one of possible 
partial equilibria the change in the Gibbs energy reduces as compared to 
(Gin�Geq) but remains maximum for the newly established conditions, 
which is explained by the reasoning similar to those presented above. 
Accordingly, the entropy production appears to be minimum. 

Derivation of the expression for the minimum production of S in the 
systems with constant T and V (volume) differs from the one above only 
by replacement of enthalpy by internal energy (U) and the Gibbs energy 
by the Helmholtz energy in the equations. When we set S and P or S and V 
dissipation turns out to be zero according to the problem statement. In the 
case of constant U and V or H and P, the interaction with the environment 
does not hinder the relaxation of the open subsystem toward the state 
max Sos. 

Let us discuss the second situation taking the isolated system shown in 
Figure 2 as an example. The open system (os) exchanges flow J with the 
environment through boundaries 1 and 2. The constant value of the flow is 
maintained owing to the source of thermodynamic potential �1 situated to 
the left of 1. With the increasing energy dissipation and constant �1 the 
value of thermodynamic potential on boundary 2 decreases (to do the 
same amount of the effective work (useful effect) requires greater differ­
ence in potentials). 

Entropy production in the isolated system (is) can be expressed by the 
equation 

TeqTð�2Þ Z Z
’ð�Þ ’ð�Þ

DSis ¼ dT þ dT; ð2Þ
Tð�Þ Tð�Þ 

Tð�1Þ T ð �2Þ 

is 21 

OS 

J J 

Figure 2 Isolated system (is) and open subsystem (os) with minimum entropy 
production. 
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where the first and second integrals in the right-hand side denote produc­
tions of S in os and part of its environment located to the right of boundary 
2, respectively (production of S to the left of boundary 1 can be assumed 
constant). With decrease in the difference (�1��2) the second integral 
increases faster than the first decreases. Indeed, to the right of boundary 
2 entropy is generated at lower values of thermodynamic potential than in 
os. However, the flow with a larger value of � heats a certain amount of 
substance to the higher temperature than the flow with lower �. Therefore, 
if the infinitely small change in the potentials of these flows occurs the 
dissipation of energy and, hence, entropy generation 

d� dq
J ¼
T T 

appears to be lower for larger �, i.e., 

@ðDSÞ �0: ð3Þ 

From this follows the tendency of the isolated system toward the distribu­
tion of energy dissipation among its parts so that the share of 
the total dissipation in the open system with fixed flows was ultimately 
small. 

The simplest and vivid example of such a distribution of entropy 
generation is the case of fixed heat flow from the open subsystem to the 
environment. For this case equality (2) takes the form: 

Teq ZT2 Z
dq dq

DSis ¼ þ :
T T 

T1 T2 

It is clear that even at partial transformation of heat into work in open 
subsystem the maximum entropy of the isolated system will be reached at 
the largest value of T2. 

Probably the presented equilibrium interpretation of the Prigogine 
theorem cannot be considered as its strict or general proof. At the same 
time this interpretation reveals the possibilities to automatically observe 
the principle of the least entropy production at equilibrium modeling of a 
wider spectrum of physicochemical processes. 

From a satisfactory, to a certain extent, explanation based on the 
second law of the Prigogine theorem we can pass to an absolutely macro­
scopic explanation of the Onsager reciprocal relations by changing the 
order of proofs accepted in the nonequilibrium thermodynamics (in the 
nonequilibrium thermodynamics the Prigogine theorem is derived from 
the Onsager relations). 
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Let us consider an elementary system with two acting forces F1 and F2 

and two flows J1 and J2 caused by them. If the forces are not constant then 
in the equilibrium state both the flows and the Onsager kinetic coeffi­
cients—L11, L12, L21, L22—turn out to be equal to zero. The equality to 
zero of these coefficients follows from the absence of flows at the initial 
moment of applying the forces that cause deviation of the system from its 
equilibrium. If either force (for example, F2) is fixed then the equalities hold: 

eqDS ¼ 1 þ ð L21Þ L22F2 ð4Þð Þ L11F2 L12 þ F1F2 þ 2; 

eqð Þ@ DS ¼ 2L11F1 þ L12F2 þ L21F2 ¼ 0;
@F1 

and 

L11F1 þ L12F2 ¼ J1 ¼ 0; 

since J1 is caused by the nonfixed force and is absent at equilibrium. 
Hence, 

L11F1 þ L21F2 ¼ 0 

and 

L12 ¼ L21: ð5Þ 

It is obvious that using the properties of homogeneity and additivity of 
thermodynamic functions it is easy to obtain the Onsager relations in a 
general form 

Ljk ¼ Lkj: 

We have managed to interpret the theorem of minimum entropy 
generation and the Onsager relations on the basis of the second law; 
therefore, we can additionally explain the Curie symmetry principle in 
terms of equilibrium. Let us suppose that far from the equilibrium 
between flows and forces there are nonlinear relationships 

Jjk ¼ LjkF� ð6Þk 

(a change in the form of this relationship does not affect the result of the 
reasoning below). Then for the case of two forces and two flows 

1 1DS ¼ L11F�1 
þ þ L12F� 

1 F1 þ L21F� 
1 F2 þ L22F2 

�þ ; 

@ð ÞDS @ DSð Þ  ¼ F2 
�F1 and ¼ F1 

�F2: 
@L12 @L21 
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It is clear that equality (5) with available relationship (6) will be attained 
only in the limit at the tendency of a toward unity near the point “eq.” 
Hence, in the course of relaxation toward equilibrium the number of 
system symmetry elements should increase (or at least not decrease). 

In order to reveal the generality of equilibrium thermodynamic models 
it seems to be useful to interpret the least action principle (PLA) as a 
corollary to the second law. Each equilibrium flow that occurs in the 
isolated system between states (or time instants) 1 and 2 can be considered 
as an open subsystem. At any infinitely small time interval energy dis­
sipation in this subsystem takes minimum possible value (the flow goes 
through a continuous sequence of equilibrium states). Accordingly, inte­
gration with respect to time from the initial to the final state determines 
the minimum of a quantity with a dimension of the product of energy by 
time, i.e., action. Historical interrelations between the PLA and the second 
law of thermodynamics and futile efforts of deriving the latter from the 
former are considered in detail in Polak (1960). 

Besides, let us note the automatic observance (certainly with correctly 
set initial data) and, hence, needlessness of the formalized descriptions in 
equilibrium modeling of such important regularities of macroscopic sys­
tem behavior as the Gibbs phase rule, the Le Chatelier–Brown principle, 
mass action laws, the Henry law, the Raoult law, etc. 

2.4 Equilibrium approximations 

In Section 2.2 we mentioned the impossibility to strictly substantiate the 
equilibrium descriptions for all cases of life and the need to apply equili­
brium approximations in some situations. The vivid examples of the cases, 
where the strongly nonequilibrium distributions of microscopic variables 
are established in the studied system and the principal difficulties of its 
description with the help of intensive macroscopic parameters occur, are 
fast changes in the states at explosions, hydraulic shocks, short circuits in 
electric circuits, maintenance of different potentials (chemical, electric, 
gravity, temperature pressure, etc.) in some spatial regions or components 
of physicochemical composition; interaction with nonequilibrium and 
sharply nonstationary state environment. 

A known method of overcoming these difficulties and passing to the 
equilibrium terms is the introduction of additional variable forces balan­
cing the differences in potentials in the description of the modeled phe­
nomenon. A good example of using similar method is given in Einstein’s 
paper related to the quantum theory of radiation (Einstein, 1914) in which 
he presented a chemically homogeneous gas as a mixture of different 
components that are characterized by their values of mole energy, found 
the law of energy distribution among them from the condition of chemical 
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equilibrium, and relying on this distribution, derived the Planck formula 
for the monochromatic radiator. Einstein’s derivation demonstrates the 
efficiency of equilibrium descriptions and also shows nontriviality of the 
method of their construction. Indeed, the constraints on attainability of the 
final complete equilibrium can be caused both by different processes of 
transfer or chemical transformations within the system and by specific 
features of the system interaction with the environment. The diverse 
conditions of nonequilibria appearance make it hardly possible to imagine 
the development of a single algorithm for transition from nonequilibrium 
to equilibrium modeling. 

Along with the difficulties associated with searching for a principal 
idea of this algorithm there are complications related to the “damnation of 
dimension.” A rapidly growing dimension of the solved problem certainly 
affects the time and stability of the computational process convergence, 
however, even to a greater extent, it affects the volume of the initial data 
preparation and difficulty to formalize the numerous constraints to be set. 
Unfortunately, so far the authors have managed to overcome the problems 
of equilibrium approximations only in solving several specific problems. 
Some of them are discussed in Sections 4 and 5. 

3. MODELS OF EXTREME INTERMEDIATE STATES 

3.1 MEIS with variable parameters 

Currently the authors are developing three classes of models of extreme 
intermediate states (MEIS): (1) with variable parameters; (2) with variable 
flows, and (3) those describing spatially inhomogeneous systems. All 
these classes of the models are formulated and analyzed in terms of 
MP, which, in the authors’ opinion, can be defined as a mathematical 
theory of equilibrium states. It is natural to start the analysis of the 
created modifications with the MEIS with variable parameters, which is 
the closest in character to the traditional equilibrium thermodynamics 
models. 

With fixed T, P, and initial composition of the components y of physi­
cochemical system this model will take the form: 

find 2 3X4 5 ¼ F xextmax F x cjxj ð7Þð Þ ¼  
Jextj2

subject to 

Ax ¼ b; ð8Þ 
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DtðyÞ ¼ fx : x�yg;	 ð9Þ 

; r 2 Rlim’ ðxr; zrÞ�c ;	 ð10Þr r

X
GðxÞ ¼  GjðxÞxj; ð11Þ 

j 

xj � 0;	 ð12Þ 

where x = (x1,…,xn)
T —a vector of mole quantities of the system compo­

nents; the vector of the initial composition y � x; cj —a coefficient, ranging 
the property of the j-th component x (usefulness or harmfulness) of interest 
for a researcher; Jext —a set of indices of the components, with the extreme 
concentration of their mixture to be determined; A—the (m � n) matrix of 
element contents in the system components; b—a vector of mole quantities 
of elements; Dt(y)—the region (the set) of thermodynamic attainability 
from y; jr and cr —the constrained kinetic function of the r-th component 
x or (and) any other parameter zr and its limit value, respectively; Rlim —a 
set of indices of constraints on macroscopic kinetics; G and Gj —the Gibbs 
energies of the system and its j-th component; xext —the point with extreme 
value of the system property of interest to a researcher. The sign £ in 
expression (9) is understood in the thermodynamic sense suggested by 
Gorban: x £ y, if it is possible to pass from y to x along the continuous 
trajectory, along which G(x) does not monotonously increase. 

The objective function (7) in accordance with the general purpose of 
MEIS that was mentioned in the introduction, i.e., finding the state with 
extreme value of the system property of interest to a researcher, in this case 
determines the extreme concentration of the given set of substances. 
Equality (8) represents a material balance. Expression (9) represents the 
region of thermodynamic attainability from point y. It is obvious that in 
Dt(y) the inequalities are satisfied: G(xeq) £ G(x) £ G(y), where xeq—the final 
equilibrium point. Inequalities (10) are used to set the constraints on 
macroscopic, including irreversible, kinetics. Presence of this constraint 
makes up principal difference of the model (7)–(12) from previous mod­
ifications of parametric MEISs. The choice of equations for the calculation 
of individual terms under the sign of sum in the right-hand side of 
equality (11) depends on the properties of the considered system. 

Writing model (7)–(12) we use two main assumptions following from 
the previous text: 

1.	 all points of the set Dt(y) are the points of equilibria; partial equilibria 
within Dt(y) possess all the properties of the complete final 
equilibrium provided any processes to occur in them are inhibited. 
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2.	 each of these points can be attained from y along the equilibrium, in a 
general case irreversible, trajectory along which the condition of 
monotonous change in the characteristic thermodynamic function is 
met (as applied to the described case—the Gibbs energy). 

An important specific feature of model (7)–(12) consists in the fact that, 
unlike the models of chemical kinetics, nonequilibrium thermodynamics 
or equilibrium thermodynamics, in the case of applying the law of mass 
action, this model, does not employ the complete representation of 
mechanism (a list of stages) of the studied process (chemical reactions 
and transfers of energy, impulses, substance, charges) but sets the lists of 
components of physicochemical composition x and parameters z. The 
need to indicate individual stages may arise only in the description of 
constraints (10) on the rates of change in some components of the vectors x 
and z. Eliminating or considerably reducing the list of stages in the model 
description and retaining in the description only the list of sought vari­
ables make essentially easier the preparation of initial information, which 
is particularly important for solution of the applied large-dimensional 
problems. 

Note that when setting the list xj, j  = 1,…,n, the authors deviate from 
the classical Gibbs definition, understanding by the system components 
not individual substances but their quantities contained in a certain phase. 
For example, if the water in reaction mixture is in gaseous and condensed 
phases, its corresponding phase concentrations represent different para­
meters of the studied system. Such expansion of the space of variables of 
the problem solved facilitates its reduction to the problems of convex 
programming (CP). 

System (7)–(12) does not include the formalized condition of meeting 
the Gibbs phase rule. This is related to the fact that this rule may appear 
to be untrue, for example, when finding part of the studied system 
components in the states close to critical, however, if it is true it should 
be observed automatically (with accuracy depending on the errors in 
calculations) due to meeting the equilibrium and conservation princi­
ples. The requirement for equality of phase potentials is also not set in 
the MEIS version presented due its obvious automatic satisfiability. The 
mentioned “omissions” in the description of the modeled phenomena 
reflect general advantages of the extreme approach that are well known 
in physics and reveal additional advantages of the equilibrium models 
discussed. 

Along with the model with fixed T and P the authors also suggested 
MEIS versions for other classical conditions of interaction between sys­
tems and the environment, i.e., for fixed: T and V, S and V, S and P, U and 
V, H and P. The model has been created to simultaneously search for xext 

and optimize the initial set of reagents y. 
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The MEIS written in form (7)–(12) does not determine unambiguously 
the character of the mathematical problem solved, whether it belongs to 
convex or concave programming. However, to date when specifying this 
model as applied to the solution of numerous theoretical and applied 
problems it has always been reduced to the CP problem, which facilitated 
enormously to the development of computational algorithms and the 
computational experiments. 

The examples of specifying the representation of individual expres­
sions in system (7)–(12) and application of MEIS with variable parameters 
are presented in Section 5. 

3.2 MEIS with variable flows 

Development of the “flow” MEIS with the form reminding the models of 
nonequilibrium thermodynamics seems to be a very promising direction in 
equilibrium modeling of physical and chemical systems. Application of 
these models opens prospects for simpler analysis and solution of many 
complex problems related to the calculations of processes considered to be 
irreversible in principle. Certainly the flows in MEIS are interpreted stati­
cally as the coordinates of states. Thermodynamic interpretations are natu­
rally extended to the kinetic coefficients that relate these flows with forces. 
Correctness of such interpretations is confirmed by the application of MP, 
being the theory of equilibrium states, as the terms for MEIS description. 

The flow modifications created can be divided into two groups: (1) the 
models of systems with real flows that are distributed on the schemes in 
the form of graphs and (2) the models of systems with conditional flows 
that undergo some certain chemical transformations or transfer processes. 
The modifications of the first group, in turn, are divided into parts that are 
related, respectively, to stationary and nonstationary flow distribution. 
The main object of modeling on the basis of the first group of the flow 
MEIS are hydraulic (heat-, water-, oil-, gas supply, etc.) (Gorban et al., 
2001, 2006; Kaganovich et al., 1997) and electric networks. However, there 
can be other applications of such models as well. For example, Kaganovich 
et al. (1997) show their use to describe the distribution of harmful sub­
stances in the vertical column of the atmospheric air. 

MEIS of stationary isothermal flow distribution in a closed (without 
sources and sinks) multi-loop hydraulic circuit has the form: 

find 
n X

Pbrmax xi ð13Þi 
i ¼ 1 

subject to 

Ax ¼ 0; ð14Þ 
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n n X X
Pmov Pbr ð15Þi xi � i xi ¼ 0; 

i ¼1 i ¼1 

ðxÞ�cr; r 2 Rlimjr ; ð16Þ 

Pbr ð17Þi ¼ f iðxiÞ; i ¼ 1; … ; n: 

Pbr PmovIn (13)–(17) and —friction pressure loss and effective pressure i i 
(created by a pump or gravitational), respectively, on the i-th branch of the 
circuit; x = (x1,…,xn)

T —the vector of volumetric flows in branches; 
A = [aij]—the (m�1) � n—matrix of incidence of independent nodes and 
branches; aij = 1, if the flow in the i-th branch in accordance with the 
direction set in advance nears the j-th node; aij = �1, if the i-th flow goes 
from the j-th node, and aij = 0, when node j does not belong to the branch i; 
j = 1,…,m; functions jr and their limiting values cr in this case can be 
determined by setting values of regulated pressures at individual nodes or 
flow rates in the individual branches of the circuit. 

The objective function (13) representing the total dissipation of kinetic 
energy of the flows at isothermal motion of fluid is proportional to the 
entropy production in the circuit and its transfer to the environment, i.e., 
proportional to the entropy accumulated by the isolated system (inter­
connection of the circuit and environment). The matrix equation (14) 
describes the first Kirchhoff law, which, as applied to hydraulic circuits, 
expresses the requirement for mass conservation. Equality (15) repre­
sents a balance between the energy generated and consumed in the 
circuit. 

Using system (13)–(17) it is possible to describe the hydraulic circuits 
with lumped, with regulated, and with distributed parameters (Gorban 
et al., 2001, 2006). It stands to reason that depending on the type of circuits 
the types of functions fi(xi) in equalities (17) (closing relations) will change. 
In Gorban et al. (2001, 2006) and Kaganovich et al. (1997) system (13)–(17) 
was modified as applied to the description of flow distribution in the 
heterogeneous circuits in which flows in branches undergo chemical 
transformations and phase transitions. In the analysis of such circuits the 
extreme thermodynamic approach reveals to a greater extent its advan­
tages relative to the use of closed systems of equations. In particular, it 
turns out to be the simplest for practical implementation. 

Using model (13)–(17), it is possible to identify the extremality criteria 
for different cases of interaction between the circuit and environment and 
reveal the reducibility of the problem of calculating the stationary flow 
distribution to the CP problem. Let us suppose that for the circuit with 
lumped parameters the closing relations have the form: 
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Pbr � 
i ¼ �ixi ; ð18Þ 

where �r —a constant coefficient and exponent � � 1. In this case the 
Lagrange function of the circuit is 

n m �1 n n1 X X X  X X
�þ1 �þ1 PmovL ¼ �ix � �j aijxi þ �m �ix � xi ; ð19Þi i 

i ¼1 j ¼1 i2Ij i ¼1 i ¼1 

where �j and �m —the Lagrange multipliers; Ij —a subset of branches 
incident to node j. 

It can be shown (Gorban et al., 2001, 2006) that the second partial 
derivatives of L with respect to xi 

��1@2L ¼ �ð� þ 1Þ�ix �0: ð20Þi@x2 
i 

Hence, the solution to problem (13)–(17) in this case corresponds to the 
maximum L = f(x) and maximum of the objective function (13). The 
possibility of existence of the maximum point at the function convexity 
and nonlinearity of the system of constraints is illustrated in Figure 3a. 

The extreme thermodynamic model of passive circuit (without effec­
tive pressure sources) is obtained by transforming model (13)–(17). 
Toward this end let us mentally isolate a passive fragment with np 

Figure 3 An objective function and extreme points on nonlinear (a) and linear (b) set of 
constraints. 
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branches and mp nodes from the active circuit. The variables xi(i = np=1,…,n) 
on the branches of the rejected circuit part include flows that determine the 
directions and magnitudes of sources and sinks Qj(j = 1,…,mp) in the  iso­
lated fragment. Then condition (15) is excluded and model (13)–(17) is 
replaced by the model that corresponds to the Kirchhoff theorem of mini­
mum heat production (Kirchhoff, 1848): 

find 

X
Pbrmin xii 

i g ð21Þsubject to 

Pbr �Ax ¼ Q; ¼ �ix i ¼ 1; … ; np:i i ; 

In this case the second derivatives of the Lagrange function 0 1
np m � 1 X X X

�þ1 @ AL ¼ �ixi � �j aijxi 
i ¼ 1 j ¼ 1 j2Ij 

with the above supposition on the form of closing relations 

��1@2L ¼ �ð� þ 1Þ�ix � 0: ð22Þi@x2 
i 

Hence, the extremum L(x) is the point of minimum. Thus, the problem of 
entropy maximization is transformed into the problem of heat minimiza­
tion; and the Kirchhoff and Prigogine theorems result from the extension 
of the second law to the passive isothermal circuits. The graphical inter­
pretation of problem (21) is given in Figure 3b. 

In the work by Gorban et al., (2001, 2006) the extremality criteria and 
corresponding MEIS modifications were presented for different cases of 
interaction between hydraulic circuits and the environment. 

Let us write the model of nonstationary flow distribution as applied to 
the problem of search for the maximum pressure rise at a given node of the 
hydraulic circuit at a fast cut off of the flow in one of its branches (or the 
largest drop at pipe break) provided that there is an isothermal motion of 
viscous incompressible fluid subjected to the action of the pressure, fric­
tion, and inertia forces (Gorban et al., 2006). 

find � �
ext Ps ¼ ePm þ Pbr 

q � Pmov 
q ð23Þ 

subject to 

Axk ¼ 0; ð24Þ 
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n n 

Pmov k Ps:br;k k 
X X

x ð25Þi xi � i i li ¼ 0; 
i ¼1 i ¼1 

( )
n � �X

k Pbr;k �brPs:br;k � �f r  k 2
DtðyÞ ¼  x : i i xi � 0 ð26Þi 

i ¼1 

k r 2 Rlimjrðx Þ�cr; ; ð27Þr 

��1 
Pbr � PmovP ¼ ePm �A q ; ð28Þq q 

where P—a vector of pressures at nodes; Pm —the fixed pressure at node 
m; Ps.br Pbr Pmovj = —the specific (per length unit) pressure loss; q and q — 

vectors of pressure losses and effective pressures in branches of the “cir­
cuit tree” q comprising the paths from nodes j = 1, …, m – 1 to the node m, 

�1Aq —a matrix of “paths” corresponding to this tree, which is obtained by 
inversion of the submatrix of matrix A for branches which belong to this 
tree; �br and �fr —coefficients; e—a unit vector; s—an index of the node for r i 
which we find the extreme pressure; k—the index of computational pro­
cess iteration. 

Further development of MEIS for nonstationary flow distribution is 
related to the possibility of many new problem statements and their 
attractiveness. The obvious objects to be studied in the future are changes 
and deviations from the required values of sources and sinks at nodes and 
flow rates in the branches of circuits under normal and emergency operat­
ing conditions. The problem of calculating the emergency operating con­
ditions seems to be the most important. The emergency operating 
conditions result from the disturbances that are too fast for the friction 
forces to manifest themselves, and we have to consider the propagation of 
shock waves in the ideal fluid. The starting points for the thermodynamic 
description of this problem can be the “equilibrium” derivation of the 
formula for hydraulic shock in an individual pipe (Gorban et al., 2001, 
2006) and the work of several authors on modeling of hydraulic shocks in 
pipeline systems on the basis of traditional (nonthermodynamic) methods 
of hydraulic circuit theory (for example, Balyshev and Kaganovich 2003; 
Balyshev and Tairov 1998). 

The experience gained with construction of the flow models of hydrau­
lic systems was applied to create the models that are based on the graph 
representation of mechanisms of chemical reactions (sets of elementary 
reactions) and transfer processes. In the work by Kaganovich et al. (1989, 
1993) and Kaganovich and Filippov (1995), the advantages of setting a list 
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of substances (components of a system) versus setting mechanisms as 
initial information have been discussed. Setting of substances appears to 
be immeasurably simpler, for example, in the analysis of coal combustion 
processes where the list of reactions includes thousands of units. However, 
in many cases, the use of the mechanism notion can be useful either for a 
quite complete elucidation of specific features of the studied process or for 
the choice of the analyzed mechanism which can be implemented by 
selecting catalysts or by specially arranging the course of reactions that 
constitute the process. 

Construction of the flow models of the second group (with conditional 
flows) will be exemplified by the MEIS of chemical system with constant 
T, P, and y that has the form: 

find 2 3X4 5 extmax Fxðð ÞÞ ¼  ð Þ  ¼ F x  � ð29Þ� cjxj �
j2Jext 

subject to X
xj ¼ yj þ �ij�i; j ¼ 1;… ; n; i ¼ 1;… ;m; ð30Þ 

i 

Dtð Þ ¼  � ð Þ gy f : x � �y ; ð31Þ 

r 2 Rlimjrðxr � ; zrÞ�cr; ; ; ð32Þð Þ

X
Gðxð�ÞÞ ¼ Gjð ð ÞÞxj; ð33Þx � 

j 

xj � 0; 0 � �i � 1; ð34Þ 

where �= (�1,…,�m)
T; �i —the degree of completeness (a coordinate) of the 

i-th reaction; �—a stoichiometric coefficient. 
Equation (30) describes the material balance of transformations of the 

j-th system component. The kinetic constraint (32) is similar to (10), but it 
includes the relationships between the constrained functions (rates of 
reactions, the most attainable concentrations of reagents, etc.) and the 
degrees of completeness of reactions. 

Model (29)–(34) determines the chemical process mechanism which is 
optimal from the stand point of the formation of a sought extreme con­
centration of the given set of substances �cjxj that are ranked in terms of 
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importance. Here a specific formulation of constraint (32) seems to be even 
simpler than that of condition (10) since “kinetics” determines the rates of 
reactions that are already contained in the “prekinetic” system (29)–(31), 
(33), and (34) and requires a comparatively small amount of additional 
information for its description. 

Currently the flow MEISs are less developed and used than the MEISs 
with variable parameters. Some examples of their use were presented in 
the works by Gorban et al. (2001, 2006) and Kaganovich et al. (1997). The 
problems of further equilibrium modeling evolution on the basis of flow 
models are discussed below. 

3.3 MEIS of spatially inhomogeneous systems 

A generalized description of spatially inhomogeneous systems seems to be 
rather complicated. Indeed, various natural and technical systems can 
possess a very diverse specific inhomogeneity. In some cases the inhomo­
geneous system can be divided into parts with fixed spatial coordinates 
that differ from one another by the values of intensive parameters, phase, 
and component composition. In the other cases parts of the system with 
macroscopic nonzero volumes that possess different thermodynamic prop­
erties get constantly mixed up with each other and change spatial coordi­
nates. The original modifications of MEIS with spatial inhomogeneity were 
constructed as applied to the first cases and, in particular, to describe the 
distribution of harmful substances in the atmospheric air (Gorban et al., 
2001, 2006; Kaganovich et al., 1997) and combustion of fuels in fixed-bed, 
fluidized-bed, and torch furnaces (Kaganovich et al., 2004, 2005a, 2006a, 
2006c). Modeling of the exchange processes between some zones was 
based on the construction of flow distribution graph (Figure 4). 

Let us write the MEIS of spatially inhomogeneous system with inten­
sive parameters changing only along the vertical axe, and with fixed y and, 
in each k-th zone, T and P has the form: 

find 2 3X
max F xð Þ ¼4 cjkxjk 5 ¼ F xext

� � ð35Þ 
Jextj;k2

subject to 
Ax ¼ b; ð36Þ 

Ain	m ¼ Q; ð37Þ 

Dh1P1	kTk � DhkPk	1T1 ¼ 0 ð38Þ 



 

h k−1 

Δ h k−1k−1 

1 

k 
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Figure 4 A graph of spatially inhomogeneous system. 

Dt yð Þ ¼ x : x�yf g; 

’ rðxrk; zrkÞ�cr; r 2 Rlim; 

ð39Þ 

ð40Þ 

EðxÞ ¼  
X
j;k 

EjkðxÞxjk ; ð41Þ 

Ej qð Þk ¼ G0 
jk Tkð Þ þ RTk ln Pk 

xjk 
	k 

� �
þMjghk; ð42Þ 
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where Ain —a matrix of incidences (connections) of independent nodes to 
branches (arcs) of the graph mapping the system structure; � �T 
	m ¼ 	m 

1 ;… ; 	m ; 	m
k ¼ � xjk�j; �j —the mole mass of the j-th system k jcomponent; Q—the vector of external sources and sinks; hk and Dhk—an 

average level and thickness of the k-th zone, respectively; 	k—the mole 
quantity of gaseous components of the k-th zone; E and Ejk—energy 
functions of the system and its jk-th component, respectively; R—the 
universal gas constant; g—the free fall acceleration; �—the surface tension; 
�—molar volume; r—a radius of condensed particle; index 1 refers to the 
zone with minimum h; indices g and c refer to the gaseous and condensed 
phases, respectively. 

Model (35)–(44) includes two material balances: the first of them (36) 
represents the condition of conservation of element quantity in chemical 
reactions and phase transitions; the second balance (37) is the expression 
of the first Kirchhoff law (in this case the law of mass conservation at 
substance motion along branches of the system graph). Equation (38) is 
based on the assumption that the gas phase in each zone is ideal. Expres­
sion (40) is the constraint on macroscopic kinetics. Energy functions E 
represent the sums of chemical (the Gibbs energy), gravitational, and 
surface (related to interphase formation) components. Derivation of for­
mulas (42, 43) is given in Kaganovich et al. (1997). Here we will only note 
that Equation (43) unlike (42) does not include the member Mjghk that 
reflects the action of the gravity forces that are balanced for the condensed 
phase by resistance forces whose field is not a potential. Therefore it is 
difficult to associate the solution to the equilibrium problem of these two 
types of forces with the solution to the extreme problem. At the same time 
their equilibrium does not affect the other equilibria that occur in the 
heterogeneous system and can be excluded from consideration. 

On the whole model (35)–(44) includes the features of both parametric 
(the main sought variables are system parameters) and flow (the flow 
distribution graph is used) MEISs and can be considered as their combina­
tion in some respects. 

For the time being the MEIS of spatially inhomogeneous systems (with­
out kinetic constraint (40)) has found the use only in solving the problem of 
harmful substance distribution in the vertical air column of isothermal 
atmosphere (Gorban et al., 2001, 2006; Kaganovich et al., 1997). Extension 
of this model application to every new problem even provided that the 
system can be divided into zones with different spatial coordinates is asso­
ciated with considerable difficulties due to specific character of the studied 
object. It is natural that these difficulties increase greatly with inclusion of 
the macroscopic kinetics constraints into the model. The main difficulties 
are: division of a modeled system into zones, determination of a set of 
limiting processes, and choice of mathematical formulations for correspond­
ing constraints taking into account sensible accuracy of calculations. 
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3.4 Variants of kinetic constraints formalization 

The section addresses the problem of specifying constraints (10), (16), (27), 
(32), and (40) on macroscopic kinetics as applied to various problems. 
Formalization of these constraints as well as constructions of MEIS are 
on the whole based on the Boltzmann assumption on the equilibrium of 
“kinetic” trajectories of motion toward point xeq and the possibility to 
describe them by autonomous equations of the form x_ ¼ f ðxÞ: 

The problems of including kinetic blocks into thermodynamic models 
vary in their significance and, hence, differ by the level of complexity for 
the MEIS types considered. In the flow and “spatial” models even initial, 
basic relations reflect to a certain degree the kinetics, and additional 
description of special kinetic constraints can affect insignificantly the 
computational process. The experience in applying the models of form 
(7)–(12) and preliminary analysis of problems to be studied in the future 
show that taking into account kinetics in MEIS with variable parameters, 
in many cases, leads to a sharp change in the mathematical character of the 
studied problems and, hence, to the need to modify the computational 
algorithms employed. Therefore, the discussion presented below refers 
largely to the parametric MEISs. 

The “translation” of kinetics into thermodynamic terms which is neces­
sary for constraint (10) to be organically included in the MEIS and which 
suggests exclusion of time variable from this constraints is, of course, a 
nontrivial problem. The optimal solution of the latter, which determines 
the formalized problem statement providing comparative simplicity and 
accuracy of computing experiments, refers to the newly formed scientific 
discipline “Model Engineering” (Gorban, 2007; Gorban and Karlin, 2005; 
Gorban et al., 2007). 

Three approaches can be outlined to choose the formalized thermo­
dynamic description of the kinetic block of model (7)–(12): (1) the thermo­
dynamic approach, with additional thermodynamic relations that limit 
some stages of the studied process mechanism, to be written; (2) the 
approach related to the transformation of right-hand sides of the kinetic 
equations and transition from the space of sought variables of the solved 
problem to the space of thermodynamic potentials, and (3) the approach 
based on direct use of these sides. 

Applicability of the first approach suggested by Keiko and Zarod­
nyuk is based on the unity of thermodynamics and kinetics which 
explain differently the same physical regularities. As was said above 
this unity was brilliantly revealed by Boltzmann in his “kinetic” and 
“thermodynamic” explanations of the second law. In our case, setting, 
for example, a constraint on the equilibrium constant value of an indi­
vidual reaction � �jxj ¼ 0 within complex chemical process and writing 

jthis constraint in one of the possible forms: 
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�j# x � � j 
�j DG0 j

Kp ¼ # p ¼ exp � ¼ ; ð45Þj ��j 
j RT # yj

j 

we indirectly impose the constraints on the rate of this reaction which 
determines attainable concentrations of its final products. (In (45) DG0 — 
the difference between the total Gibbs energies of products and initial 
substances.) The constraints similar to (45) allow the mechanism of pro­
cesses to be taken into account in the thermodynamic studies and do not 
require the complete knowledge of the mechanism and corresponding 
formalized description. Instead of the equalities of type (45) one can 
compose an auxiliary MEIS intended to search for the extreme values of 
constrained variables and substitute them into the initial model. It is 
obviously most expedient to set thermodynamic constraints on individual 
stages as applied to fast variables whose formation to a great extent 
determines further course of the process studied. For example, the fast 
formation of harmful substances can complicate the production of target 
products. Derivation of formulae for additional thermodynamic con­
straints disregarding the permissible time of chemical reactions and trans­
fer processes narrows the area of effective application of the given 
approach. Nevertheless, some possibilities of its effective application are 
demonstrated in Section 5.3. The usefulness of this idea undoubtedly 
deserves further scrutiny. 

The second method of excluding time variable from (10) is based on 
thermodynamic analysis of kinetic equations suggested by Horn (1964; 
Horn and Jackson, 1972), Feinberg (1972, 1999; Feinberg and Hildebrant, 
1997; Feinberg and Horn, 1974), Gorban, and other authors. We consider 
the technique used in the work by Gorban (1984), which implies the 
transformation of right-hand sides of kinetics equations, i.e., replacement 
of coordinates by potentials and further substitution of the transformed 
sides into the expression for the derivative of the total characteristic 
function of the considered system with respect to time 
 . In the work 
by Gorban (1984) according to Boltzmann it was supposed that this 
function possessed the properties of the Lyapunov functions. 

We will explain this method on the example of setting the constraint on 
the rate of the i-th chemical reaction. Let the rate equation of this reaction 
have the form: 

dxi �jwi ¼ ¼ ki# xj ; ð46Þ
d
 j 

where k—the rate constant. Independence of the right-hand side of 
Equation (46) from 
 makes possible the transformation (47) and the 



31 Equilibrium Thermodynamic Modeling of Dissipative Macroscopic Systems 

representation of derivative of the characteristic function (48) with respect 
to time in the form (49): 0 1X

ki# x 
�j ! ’ iexp @ �j�j

A; ð47Þj

j j
 

ZX
G ¼ �dx; ð48Þ 

i 

0 1XX X
_G ¼ ji�jexp @ �j�j

A; ð49Þ 
i j j 

where �—a chemical potential. 
The set of thermodynamic attainability Dt(y) can be described in 

MEIS by either using the nonpositivity condition of the right-hand 
side of Equation (49), or writing the constraint on the sign of derivative 
of (48) with respect to x. Both methods as applied to MEIS are associated 
with great difficulties that can be explained by the fact that the con­
straints on rates are set only for part of the stages of the studied 
process mechanism. Therefore, the representations of the components 
of vector x, which  take  part  in  the constrained reactions and influence 
the values of this function only through their concentrations in the 
sequential states, should be matched in the formulation of monotonicity 
condition of the system characteristic function (in description of the set 
Dt(y)). Due to these difficulties to date the authors, despite the theoretical 
effectiveness of the second approach, have used mainly the  third of the  
above methods for excluding time variable from MEIS to specify the 
kinetic constraints. 

The simplest situation in the use of the third method is when 
the constraint on the process rate is determined only by one reaction, for 
example, of form (46). In this case to find the limiting concentration (or 
another parameter of the r-th component) we can write the inequality: 

�jdxr � kr# x d
:  ð50Þj
j 

When the mechanism of formation xr includes several reactions, (50) is 
replaced by a more complex expression 

!X 
�jdxr � kir# x d
:  ð51Þj

i j 




 !
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With integration of (50) or (51) the considered time interval 
b is taken 
equal to either the duration of the components stay in whole reactor or in a 
zone where the limiting stage of the process occurs. The values xj, here, are 
very often set constant. Depending on the statement of the problem 
solved, sometimes they can be taken equal to the values of corresponding 
components of vector y, and sometimes they can be calculated on the basis 
of search for the extremum of the objective function on the auxiliary 
MEISs. It is clear that by replacing all variables in the integrals of the form 

Z X 
�jkir# x d
j

i j
0 

by constant constraints (10) reduce to linear inequalities 

!X 
xr � kir# xj

�j d
 ð52Þ 
i j 

and their inclusion into MEIS does not affect the reducibility of the latter to 
the CP problems. 

Unfortunately it is not always possible to use only linear inequalities. In 
further studies we will have to include into the kinetic constraints both the 
equations of nonlinear chemical kinetics and the nonlinear equations of 
transfer processes. Nonconvexity of the problem solved and possible multi­
valuedness of its solutions, in case the constraints on radiant heat exchange 
are included into MEIS, are shown in the work by Kaganovich et al. (2005a). 

The MEIS modifications including the constraints on macroscopic 
kinetics have already revealed their high efficiency in the analysis 
of environmental characteristics of the fuel combustion processes 
(Kaganovich, 2002; Kaganovich et al., 2004, 2005a, 2006a, 2006b, 2006c, 
Shamansky, 2004). Their application enriched the explanations of the 
equilibrium model capabilities for studying the irreversible phenomena 
of different nature with vivid examples. Simultaneously it is shown that 
the account taken of the macrokinetic constraints reduces appreciably the 
thermodynamic attainability region studied with the help of MEIS and 
hence enhances the accuracy of thermodynamic estimations of the limiting 
characteristics of processes. Specific examples of formulation and use of 
kinetic blocks of MEIS are considered in the Section 5. Along with the 
merits of the new equilibrium model modifications serious difficulties of 
their construction and application were revealed. First of all these difficul­
ties are related to the above change in the mathematical character of the 
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problems solved: convexity violation of the system of constraints or an 
objective function, multivaluedness of solutions, etc. 

The difficulties emerging are certainly surmountable. However, thor­
ough studies are necessary to overcome them. The discussion of prospects 
for MEIS application includes, in addition, the issue on the optimally 
complete description of constraints on macroscopic kinetics. A normal 
desire here is to include into the unified model the constraints on max­
imum possible number of stages that limit the results of the total process. 
The “uniting” tendency should undoubtedly manifest itself in thermody­
namic modeling. At the same time creating comprehensive descriptions of 
chemical kinetics and transfer processes one should remember that over-
complication of thermodynamic models leads to the loss of their compara­
tive advantages over kinetic ones: loss of comparative easiness of setting 
the initial information (first of all about the process mechanism) and 
simplicity of the mathematical apparatus employed. 

3.5 Geometrical interpretations 

Graphical interpretation of MEIS first will be given for a parametric model 
of elementary reaction of isomerization. Let us suppose that the reaction 
proceeds with constant T and P, y = (1,0,0), the maximum value of the 
third isomer is found and MEIS has the form: 

find 

max x3 ð53Þ 

subject to 

x1 þ x2 þ x3 ¼ y; ð54Þ 

Dt y f ygð Þ ¼  x : x� ; ð55Þ 

3 � � ��
G x G0 P 

xj xj; ð56Þ 
X

ð Þ ¼  j þ RT ln 
1 

xj � 0: ð57Þ 

Model (53)–(57) does not include kinetic constraint that corresponds to 
constraint (10) in the general model (7)–(12). Graphical illustrations of the 
efficiency of including constraints on macroscopic kinetics into MEIS are 
given in Section 5. This section focuses on the geometrical explanation of 
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comparative advantages of using traditional space of kinetic variables 
(rates, flows, and time) and thermodynamic space of characteristic func­
tions and parameters of state in physicochemical modeling. 

Let us explain the specific features of model (53)–(57) using Figure 5. The  
equilateral triangle A1A2A3 in Figure 6a is a material balance polyhedron 
Dt(y), which is determined by equality (54) and inequality (57). The vertices 
correspond to the states in which the mole content of one of the components 
equals an absolute value of y, which for simplicity and without loss of 
generality can be assumed equal to unity and the remaining two—equal to 
zero. Index at the symbol of vertex A coincides with the index of the corre­
sponding component. The interior points of the edges represent the reaction 
mixture compositions in which the concentration of only one reagent is zero 
and the total mole quantity of the remaining two makes up unity (in case the 
above possible supposition is assumed). On the area of the triangle you can 
see the points xeq and xext, lines  G = const as well as dashed zones of thermo­
dynamic unattainability from y by condition (55) near the vertices A2 and A3. 
Correspondingly the nondashed part of the triangle represents Dt(y). The 
two trajectories of motion from y to xext are shown: the one that meets (a 
continuous line) and the one that does not meet (a dot-and-dash line) the 

ext requirement for the Gibbs energy monotony. The point ~x represents 
approximately the maximum concentration of x3. It  is  obtained at  motion  
from y along the edge A1A3 to the point minimum value of Gibbs energy and 
succeeding transfer to the curve G ¼ Gmin tangent to the edge. A1 A3 

Figure 5b presents the surface (in this case it is plane) of the objective 
function F(x) = x3 and two closed sets that represent a feasible set of 
solutions on the surface of function G(x) and in the space of variables x. 
The set x is represented by the projection of the triangle A1A2A3 (Figure 5a) 
to the horizontal plane x2Ox3. Point O, the beginning of coordinates, 
coincides with the projection of vertex A1 to this plane, which corresponds 
to the corresponding initial composition of reagents y. The points xeq and 
xext, the lines G = const, and the feasible and unfeasible trajectory of 
transition from y to xext are shown on the plane of compositions x2Ox3, 
and on the surface of function G(x), and on the objective function plane. 

Even Figure 5 prompts some thoughts about the convenience of using 
thermodynamic variables. The form (topology) of the surface of function G 
(x) helps find the feasible directions of motion to the point G(xext), which 
maps the point F(xext) in the thermodynamic space. These directions are 
invariant with respect to the second law of thermodynamics and lead to 
the extremum of the characteristic thermodynamic function of the system 
(in case, shown in Figure 5, to the minimum G, i.e., to G(xeq)). 

The projection of the motion trajectories to the manifolds that are 
invariant with respect to the second law represents one of the components 
of the method for reducing the physical and chemical kinetics models, 
which is developed by Gorban and Karlin (2005). The specific feature of 
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Figure 5 A graphical interpretation of the model of extreme intermediate states. 
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eq 

Figure 6 Polyhedron of material balance (a) and thermodynamic tree (b) of hexane 
isomerization reaction. T = 600 K, P = 0.1 MPa. 

the MEIS-based approach lies in the fact that it envisages the projection 
(mapping) of sets of possible states rather than trajectories. 

A remarkable advantage of the optimization models based on the use 
of thermodynamic space consists in the possibility, in case of reducing 
these models to CP problems, to transform the region of feasible solutions 
into a one-dimensional set (a graph in the form of a tree) and to study the 
specific features of the studied system behavior on this graph—“a thermo­
dynamic tree.” 

The notion of thermodynamic tree (the graph, each point of which 
represents the set of thermodynamically equivalent states) was introduced 
by Gorban (1984) where he also revealed the possibilities of applying this 
notion for analysis of the chemical kinetics equations. In the work by 
Gorban et al. (2001, 2006) the authors consider the problems of employing 
thermodynamic tree to study the physicochemical systems using MEIS. 
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Let us exemplify the effectiveness of the idea of tree in equilibrium 
thermodynamic modeling again by isomerization, using the calculations 
of transformations of three hexane isomers: n-hexane (x1), 2-methylpen­
tane (x2), and 3-methylpentane (x3) at  T = 600 K and P = 0.1 MPa. Graphi­
cal interpretation of the analysis is presented in Figure 6a and b. 

Figure 6a presents the same triangle of material balance as in Figure 5a, 
but with some additional details included. It shows the feasible trajectories 
of motion toward the points of extreme values of both x3 and x2. Different 
shadings denote five components of the arcwise connectedness (Gorban, 
1984), i.e., regions, in each of which any two points can be connected by 
thermodynamically feasible trajectories. Figure 6b shows a thermody­
namic tree with the branches connected with the regions highlighted in 
Figure 6a by one-to-one correspondence. Each point on the tree represents 
a section of the curve G = const that belongs to a corresponding compo­
nent of connectedness (a set of thermodynamically equivalent states). The 
points of this section obey the linear balance: ∑Gjxj = G = const. 

The constructed tree which replaces the thermodynamically attainable 
set Dt(y) allows one to study the behavior of both the characteristic 
thermodynamic function (in this case the Gibbs energy) and the objective 
function F(x). The feasible trajectories of the motion from point y = (1,0,0) 

xext xextto the points and are shown in Figure 6a represented on the tree 3 2 
by paths 1–4 and 1–4–5, respectively. Motion from point 4 to point 3 (the 
maximum feasible value x3 according to the condition of material balance 
xmat) and from point 5 to point 2 (xmat) turns out to be impossible due to 3 2 
the Gibbs energy increase. Points 4 and 5 are levels of G (isopotential 
surfaces: G = –424.118 kJ/mol and G = –425.672 kJ/mol), at which the 

xext xextextreme compositions and should be located. 3 2 
Though in formulations of MEIS of type (7)–(12) or the particular form 

(53)–(57) the possibility of projecting the space of thermodynamic vari­
ables to a tree is not shown, the knowledge of principal possibility to 
reduce the set Dt(y) to the tree makes the analysis of capabilities and 
comparative merits of the model of extreme intermediate states essentially 
easier, clearer, and more convincing. 

Using the tree we can analyze the situations when the solution of the 
problem posed appears to be degenerate. As applied to the considered 
example of isomerization such a situation occurs when we search for max 
(x2 + x3). In this case all points of edge 2–3 of the material balance triangle 
that belong to Dt(y) are the points of the objective function maximum. Let 
us make a natural supposition that the two extreme cases (1) x2 = 1, x3 = 0 
and (2) x2 = 0, x3 = 1 are equally satisfactory and, hence, we can seek to 
attain both vertex 2 and vertex 3. In the first case the sought level of the 
Gibbs energy will be G = G5, and in the second—G = G4. In  Figure 6a the 
found range of levels G4–G5 corresponds to the part of edge 2–3, which is 
located between the point of its intersection with the curve G = G4 and the 
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point of contact with the curve G = G5. In  Figure 6b the range of possible 
solutions is represented by the branch of tree 4–5. 

The idea of tree is rather effective for solving and analyzing the pro­
blem of determining G(xext) and when its solution is unique. The difficulty 
of developing relevant computational algorithms is to a great extent 
related to the implicit form of setting the constraints on the Gibbs energy 
in MEIS (expressions (9), (26), (39)) (Gorban et al., 2001, 2006; Kaganovich 
and Filippov, 1995; Kaganovich et al., 1989, 1993). The methods of over­
coming the difficulty that have been used so far lead often to the algo­
rithmic (not related to the accuracy of computer computations) error in 
computations. The use of the tree notion allows it to be used to develop 

ext),accurate algorithms for the calculation of G(x or substantiate the 
applicability and assess the accuracy of alternative algorithms. The issues 
of constructing the algorithms intended for solving the problem of search 
for G(xext) and related to the direct application of thermodynamic tree 
were considered in the work by Gorban et al. (2001, 2006). 

When setting the constraints on macroscopic kinetics in MEIS the idea 
of tree is useful even from the viewpoint of interpreting the applied 
method for formalization of these constraints. It (the idea) can help repre­
sent even the deformation of the region of feasible solutions in the thermo­
dynamic space and the deformation of extremely simple representation of 
this region (a thermodynamic tree), and the projection of limited kinetic 
trajectories on the tree. In other words the use of the tree notion helps 
reveal the interrelations between kinetics and kinetic constraints, on the 
one hand, and thermodynamics, on the other. 

Geometrical illustrations of the efficiency of thermodynamic descrip­
tion of the stationary flow distribution problems as applied to the analysis 
of closed active and open passive hydraulic circuits were already pre­
sented in Section 3.2. The geometrical interpretation of the general models 
for the nonstationary flow distribution in the hydraulic circuit ((23)–(28)) 
and chemical systems with the set redundant mechanism of reaction ((29)– 
(34)) is still to be carried out which will obviously require a number of 
nontrivial problems to be solved. 

4. COMPARISON OF MEIS WITH THE MODELS OF 
NONEQUILIBRIUM THERMODYNAMICS 

4.1 Introductory notes 

Feasibility of applying the models of equilibrium thermodynamics to the 
analysis of nonequilibrium irreversible processes were described in Sec­
tion 2 of this chapter. This section discusses the comparative efficiency of 
such application to solve diverse theoretical and applied problems. 
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Nonequilibrium thermodynamics was chosen as a main object for com­
parison, though an essential part of conclusions drawn below is useful in 
MEIS comparison with the models of chemical kinetics, synergetics, theory 
of dynamic systems and other models, model engineering and theories of 
motions. Comparison is made from two standpoints: (1) a scope of areas of 
effective applications and (2) simplicity and fruitfulness of computing 
experiments. 

4.2 On the areas of effective applications of equilibrium and 
nonequilibrium thermodynamics 

First of all, we will touch a widely believed misunderstanding about 
impossibility of using the second law of thermodynamics in the analysis 
of open systems. Surely, the conclusion on inevitable degradation of iso­
lated systems that follows from the second law of thermodynamics cannot 
be applied to open systems. And particularly unreasonable is the supposi­
tion about thermal death of the Universe that is based on the opinion of its 
isolation. The entropy production caused by irreversible energy dissipa­
tion is, however, positive in any system. Here we have a complete analogy 
with the first law of thermodynamics. Energy is fully conserved only in the 
isolated systems. For the open systems the balance equalities include 
exchange components which can lead to the entropy reduction of these 
systems at its increase due to internal processes as well. 

The courses of chemical and technical thermodynamics, as the whole 
applied thermodynamics, are devoted, in their vast majority, to the effi­
ciency analysis of open systems (heat engines, chemical reactors, metal­
lurgical furnaces, etc.) and based in this analysis primarily on the second 
law. The fundamental Gibbs equations that describe behavior of open and 
closed systems for different cases of interaction with the environment are 
devised from the second law. And correspondingly numerous computing 
algorithms and systems (employing the equations) that were developed in 
the late 20th century to solve different problems of energy, chemical 
technology, metallurgy, cosmonautics, geology, ecology, and other 
spheres of science and technology satisfy it. From the viewpoint of our 
discussion it is worth noting that all these computing systems are based on 
the concepts of exactly equilibrium thermodynamics. Therefore, the state­
ment that the nonequilibrium thermodynamics forms a “theoretical base 
for studying open systems” (Zubarev, 1998) arouses surprise. 

The next sphere of competition between equilibrium and nonequili­
brium thermodynamics is the analysis of irreversible trajectories. A pop­
ular opinion about the possibility for the equilibrium thermodynamics 
only to determine admissible directions of motion for nonequilibrium 
processes was already mentioned in Introduction. However, the more 
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than 20-year experience of MEIS application has revealed the possibility of 
analyzing any probable states in the admissible directions. This possibility 
follows directly from two approaches of the second law substantiation by 
Boltzmann (see “Introduction”): (1) from the analysis of trajectories and (2) 
from the analysis of states. It is natural to assume that permutation of 
axioms and theorems allows the methods for search and analysis of any 
attainable states of the thermodynamic system to be devised from the 
second law. Reduction of the models of motion to the models of rest, 
analysis of trajectories to analysis of states is the specific feature of the 
approach developed by the authors, which determines its role in “Model 
Engineering” (Gorban, 2007; Gorban and Karlin, 2005; Gorban et al., 2007). 
This specific feature stipulates to a great extent its comparative computa­
tional simplicity and efficiency. 

The third, and probably the most complex, area with respect to com­
parative analysis of equilibrium and nonequilibrium approaches is the 
modeling of mechanisms of the studied processes. As was described 
above, the parametric MEISs were constructed on the basis of the lists of 
substances (system components) rather than the lists (mechanisms) of 
reactions. However, there is a wealth of experience gained in considera­
tion of both individual stages with the help of parametric models and the 
complete mechanisms based on the flow models of hydraulic and chemi­
cal systems. For the hydraulic systems it is possible to choose not only 
physical mechanism (flow distribution over branches of the given redun­
dant scheme that provides the minimum energy consumption for fluid 
transportation), but also “technical” (distribution of resistances of 
branches depending on their technical characteristics) and “economic” 
mechanisms (distribution of economic expenditures over branches that 
minimizes production of “economic” entropy, being a measure of useless 
irreversible spending of money). 

A partial inclusion of mechanisms (their individual stages) by means of 
Equations (10), (16), (27), (32), and (40) is clear to some extent from the 
above said and its efficiency is illustrated by examples in Section 5. Here  
we explain the possibilities of choice by the equilibrium models of com­
plete mechanisms. 

Prior to discussion of modeling the complete mechanisms of chemical 
systems on the basis of MEIS (29)–(34), we will present capabilities of the 
approximate analysis of the efficiency of such mechanisms by MEIS (7)– 
(12) with variable parameters. This possibility was studied in Kaganovich 
and Filippov (1995; Kaganovich et al., 1993). Let us consider a process 
during which some initial composition a should be used to get the max­
imum quantity of products b. Let the point y in Figure 7 denote an initial 
state of the reactive system. The point m corresponds to the maximum 
thermodynamically admissible concentration of b. The points l and k 
represent states of a chemical system with the use of catalysts that provide 



 

 

 x c
mat 

y 

k 

x eq 

l 

x d 
mat 

m 
• 

x b
mat 

41 Equilibrium Thermodynamic Modeling of Dissipative Macroscopic Systems 

Figure 7 Catalyst impact on the attainable state. 

appropriate mechanisms of processes. Figure 7 shows that the mechanism 
connected with motion through the point l is more effective, since the 
Gibbs energy monotonically decreases on the curve ylm. From the point k 
that is passed at the competing mechanism of the process the state m 
proves to be unattainable. 

Comparative assessment of the indicated mechanisms can be obtained 
on the basis of the multivariant calculations on model (7)–(12). At first we 
must solve the problems of maximization of sets of the substances c and d 
that correspond to the main components of compositions of the reactive 
mixtures l and k. Then taking the obtained extremal states as initial the 
problems of maximizing b must be solved. 

The use of MEIS (29)–(34) allows the comparison of mechanisms based 
on the single-variant calculation. For this purpose a redundant graph of 
the process (complete mechanism) is constructed and the “unnecessary” 
branches are automatically excluded from the scheme during optimiza­
tion. In this case the constraints on the reaction rates (inequality (32)) are 
also taken into consideration. An example of the redundant graph as 
applied to hexane isomerization (see Section 3.5) is given in Figure 8. 
Preliminary analysis of the efficiency of using the flow MEIS to study 
mechanisms of chemical reactions (on the basis of the final equilibrium 
model only and without kinetic constraints) is described in the works by 
Gorban et al. (2001, 2006), Kaganovich and Filippov (1995), and Kagano­
vich et al. (1993). 

Possibility of equilibrium thermodynamic modeling of fluid transpor­
tation mechanisms will be discussed on the example of optimal synthesis 
problem of multiloop hydraulic systems that was stated by Khasilev, the 
founder of the theory of hydraulic circuits (Khasilev, 1957, 1964, 1966; 
Merenkov and Khasilev, 1985) and was studied in many works (see, for 
example, Kaganovich (1978); Kaganovich and Balyshev (2000); Merenkov 
et al. (1992); Sumarokov (1976)). We will formulate this problem as a MEIS 
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Figure 8 A graph of hexane isomerization reaction. 
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modification that represents development and generalization of the model 
of stationary isothermal flow distribution (13)–(17): 

find " #X
min Fðx; PbrÞ ¼  FiðxjðxÞ; Pbr 

i Þ ¼ FðxextÞ ð58Þ 
i 

subject to 
Ax ¼ Q; ð59Þ 

n n X
Pmov 
i xi � 

X
Pbr 
i xi ¼ 0; ð60Þ 

i ¼1 i ¼1 

DtðyÞ ¼  x : x�yf g; ð61Þ 

’ rðxÞ�cr; r 2 Rlim; ð62Þ 

Pbr 
i ¼ �ix � 

i ; i ¼ 1; … ; n; ð63Þ 
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in � = 2 (turbulent flow) 
8��l0

�i ¼ ; ð64Þ 
�2d5 

Fi ¼ axiðxÞPbr þ bx
 
i ðxÞ=ðPbr Þ � þ c; ð65Þi i 

where F and Fi—the cost (economic) characteristics of the whole network 
and its i-th branch; �—a coefficient of the i-th branch resistance; �—a coeffi­
cient of friction; �—the fluid density; li and di—the pipeline length and 
diameter of the i-th branch, respectively; a, b, and  c—coefficients; 
 and �— 
exponents depending on the exponent value at xi in (63) 

k ¼ ak þ bkdz: ð66Þ 

The first term in the right-hand side of (65) is proportional to the energy 
consumption to move fluid, the second is proportional to capital invest­
ments (pipe diameters for the pipeline network), and the third represents a 
fixed part of expenditures. 

Figure 9 gives an insight into the potential objects of studies by model 
(58)–(65). It shows a scheme of the main double-pipe water heat network 
of the heat supply system for a large urban district. The optimal synthesis 
problem for this network consists in the determination of flow distribution 

1 
2 

3 

4 

5 

Figure 9 The scheme of heat supply system in a “double-line” representation 1, 
2—sections of supply and return pipelines, 3—heat source, 4—nodes of consumer 
connection; 5—pumping station. 
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over the scheme branches (the zero-flow branches are excluded from the 
scheme) and pipeline diameters. Hence, it includes a hydrodynamic (phy­
sical) and a technico-economic component. Herewith, in addition account 
can be taken of the requirements to heat supply reliability (e.g., by specify­
ing the condition of two-sided supply of individual consumers) and ecol­
ogy (e.g., by specifying the constraints on loading a less environmentally 
sound heat source). 

Interrelations between the simultaneously solved problems of hydro­
dynamic (calculation of xi) and technico-economic (choice of diameters di) 
optimization of the network are revealed by taking as initial the empirical 
Darcy–Weisbach equation 

2 2��w 8�x
Pbr ¼ l ¼ l; ð67Þ

2d �2d5 

from which formula (64) was obtained to determine �. In  (67) w is the fluid 
speed. 

When Khasilev studied mathematical properties of the problems on 
choosing the vectors x and Pbr (d) (Khasilev, 1957), he varied the type of 
equations (67) based on the exponent change at w and x from unity (a 
laminar mode of fluid flow) to two (a turbulent mode). He established that 
the functions F and Fi are concave along the axes xi and convex along the 

Pbrdirections (on the assumption that 0 £ � £ 1 and 0 £ 
 £ 1). Hence, i 
problem (58)–(65) does not belong to the CP. 

Since with the fixed value of vector Pbr and the lack of constraint (62) 
the admissible region of solutions is a polyhedron, F reaches its minimum 
at one of its vertices. With the rank of matrix A equal to m – 1 and n 
unknowns the reference solution contains no less than n – (m – 1) zero 
components, which equals the number of chords of the system of inde­
pendent loops of the network graph. In this case the graph tree is a 
polyhedron vertex and the optimal variant should be among the set of 
trees of a redundant scheme. 

The problem of choosing Pbr with the fixed x is a problem of CP. 
Khasilev carried out an interesting analysis of the problem with respect 
to the properties of F(Pbr) (disregarding (62) Khasilev, 1957). To do this he 
applied dimensionless characteristics 

Pbr F � Fextð Þ 
e ¼ ; 	  ¼ : ð68ÞextðPbrÞ ðF � cÞ 

Transforming (65) based on (68) Khasilev devised the equation 

	 ¼ 
j" þ 

1 � 1; ð69Þ ð1 þ jÞ Ejð1 þ jÞ 



45 Equilibrium Thermodynamic Modeling of Dissipative Macroscopic Systems 

where the value of the constant j is determined by the exponent value at x 
in (63) and the relationship between capital investments in pipelines and 
their diameters (66). Analysis of (69) in the context of our discussion is of 
interest, first of all because it reveals independence of 	, i.e., the relative 
change of economic cost characteristics of the system, from the coefficients 
a, b, and c and hence, independence from such technico-economic indices 
determining these coefficients as specific costs of electricity used for fluid 
pumping, specific capital investments in pipelines with different dia­
meters, depreciation and repair charges, etc. (naturally, these indices 
determine absolute values of costs and their variations at pressure loss 
deviation from the optimum). The only factor that influences the shape of 
the curve 	 = f("), i.e., mathematical features of the economic optimization 
problem of pressure loss distribution over the hydraulic network branches 
in the form of a tree, is the exponent value at x in the hydrodynamic 
relation (67). 

Specifically, from Equation (69) follows the property of exceptionally 
great flatness of 	 near the optimum point (" = 1). For example, for the 
turbulent fluid flow (� = 0.19) a twofold pressure loss in comparison to the 
optimal value increases transportation cost by 4.6% and a twofold reduc­
tion of loss decreases the cost only by 3.8%. For the linear electric networks 
(Equation (69) is also true for them) the corresponding figures are much 
higher and account for 8.3 and 25.0%. The revealed property of economic 
function flatness allows a reasonable simplification of the pressure loss 
optimization methods. 

Before discussing of the general method to solve problem (58)–(65) 
(joint optimization of x and Pbr it should be noted that the pressure losses 
and pipe diameters in branched networks with different constraints, 
including those of type (62), can be effectively optimized by the dynamic 
programming method (Kaganovich, 1978; Merenkov and Khasilev, 1985; 
Merenkov et al., 1992). It is applicable to parameter optimization only in the 
tree-like schemes. For the closed multiloop networks xi = f(x) and corre­
spondingly, the cost characteristics of individual branches Fi = c(x), i.e., the 
minimized economic characteristic of the network as a whole, prove to be 
nonadditive, which does not allow the use of dynamic programming. 

The method of coordinatewise optimization was proposed for simul­
taneous choice of flow rates and pressure losses on the closed redundant 
schemes (Merenkov and Khasilev, 1985; Merenkov et al., 1992; Sumaro­
kov, 1976). According to this method motion to the minimum point of the 
economic functional F(x, Pbr) is performed alternately along the concave 
(F(x)) and convex (F(Pbr)) directions. The convex problem is solved by the 
dynamic programming method and the concave one reduces to calcula­
tion of flow distribution. The pressure losses in this case are optimized on 
the tree obtained as a result of assumed flow shutoff at the end points of 
some branches. The concave problem is solved on the basis of entropy 
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maximization of an isolated system including a hydraulic network and its 
environment. As was shown in Section 3.2, the sought maximum corre­
sponds to the minimum of entropy production (the minimum energy 
dissipation) in the open subsystem, i.e., in the network. 

From the “physico-economic” standpoint convergence of the cho­
sen method can be explained by the fact that it naturally represents 
the tendency of an open system with fixed conditions of interaction 
with the environment to equilibrium, which corresponds to minimum 
production of both physical and economic entropy. Optimization for 
the obtained “technico-economic mechanism” determines flow distri­
bution corresponding to the minimum energy consumption, i.e., a 
physical mechanism. Thus, in this case the model of equilibrium 
thermodynamics—MEIS solves the problem of self-organization, 
ordering of the “physico-economic” system that is referred as a rule 
to the area of applications of nonequilibrium thermodynamics or 
synergetics. 

Note that the coordinatewise optimization method has already 
found numerous practical applications to optimization of heat, oil, 
water, and gas supply systems (Merenkov and Khasilev, 1985; 
Merenkov et al., 1992; Sumarokov, 1976). As a matter of fact, in the 
algorithms used for applied problems the flow distribution was calcu­
lated not on the base of entropy maximization, but with the help of the 
closed system of equations of the first and second Kirchhoff laws. 
However, because of equivalence of approaches that are based on the 
principle of conservation and equilibrium (extremality) the Kirchhoff 
equations can be strictly replaced by thermodynamic relations. And 
the extreme thermodynamic approach in many cases should be prefer­
able owing to the known low sensitivity of the extremal methods to 
variation of the space of variables. 

4.3 Comparison of computational efficiency of equilibrium and 
nonequilibrium approaches 

Comparative simplicity of MEIS-based computing experiments is due 
primarily to the simplicity of the main initial assumption of its construc­
tion on the equilibrium of all states belonging to the set of thermodynamic 
attainability Dt(y) and the identity of their physico-mathematical descrip­
tion. These states belong to the invariant manifold that contains trajec­
tories tending to the extremum of characteristic thermodynamic function 
of the system and satisfying the monotonic variation of this function. The 
use of the mentioned assumption consistent with the second thermody­
namics law allows one, as was noted, not to include in the formulation of 
the problem solved different more particular principles, such as the Gibbs 
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phase rule, Raoult’s and Henry’s laws for diluted solutions, principles of 
the linearity of motion equations, etc. 

The lacking special description of the Gibbs phase rule in MEIS that 
should be met automatically in case of its validity is very important for 
solution of many problems on the analysis of multiphase, multicomponent 
systems. Indeed, without information (at least complete enough) on the 
process mechanism (for coal combustion, for example, it may consist of 
thousands of stages), it is impossible to specify the number of independent 
reactions and the number of phases. Prior to calculations it is difficult to 
evaluate, concentrations of what substances will turn out to be negligibly 
low, i.e., the dimensionality of the studied system. Besides, note that the 
MEIS application leads to departure from the Gibbs classical definition of 
the notion of a system component and its interpretation not as an indivi­
dual substance, but only as part of this substance that is contained in any 
one phase. For example, if water in the reactive mixture is in gas and 
liquid phases, its corresponding phase contents represent different para­
meters of the considered system. Such an expansion of the space of vari­
ables in the problem solved facilitates its reduction to the CP problems. 

Errors in the description of nonequilibrium processes in the linear 
nonequilibrium thermodynamics (Glansdorff et al., 1971; Kondepudi 
et al., 2000; Prigogine, 1967; Zubarev, 1998) are caused primarily by the 
assumptions (unnecessary at MEIS application) on the linearity of motion 
equations. One of the main equations of this thermodynamics has the form 

Jj ¼ LjkFk; ð70Þ 

that relates flows with the forces creating them. The assumption on linear­
ity of differential equations describing fluctuations underlies derivation of 
the Onsager relations and the Prigogine theorem. These assumptions 
cause inaccuracy of the formulas for the Onsager kinetic coefficients L. 
Below are some of them (Kondepudi et al., 2000): 

Lqq ¼ kT2; ð71Þ 

T
Lee ¼ ; ð72Þ 

r 

�1n1 @�1 
� 1 

L11 ¼ D1T 1 þ ; ð73Þ 
�2n2 @�2 

D1n1L11 ¼ ; ð74Þ
R 
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Rf ; eq Rr ; eqL ¼ ¼ : ð75Þ
R R 

The formulas refer: (71) to thermal conductance; (72) to electric current; 
(73) to diffusion in the two-component mixture; (74) to dissolution in the 
ideal solution; (75) to the single-stage chemical reaction. In the formulas k 
is a coefficient of thermal conductance; r is the electric resistance per unit 
of conductor length; D1 is a coefficient of diffusion of substance soluble; � 
and n are the specific volume and the number of moles, respectively; Rf,eq 

and Rr,eq are the rates of the forward and reverse reactions in the equili­
brium state. 

Analysis of formulas (71)–(75) shows that the Onsager coefficients are 
connected with the constants of the corresponding processes (k, r, D) 
through the quantities (T, v, n, �, Rf, Rr) that vary during relaxation to 
the equilibrium state. It is clear that T will change essentially in the thermal 
conductance process; v, n, and �—during diffusion and dissolution; Rf and 
Rr —in chemical reactions. Therefore, the Onsager coefficients are constant 
only close to the equilibrium state. This fact causes errors in calculations 
even in the quantitative analysis of the simplest ideal systems. Analysis of 
complex large-dimensional real systems firstly, requires that the whole 
mechanism of the process modeled be known (which is usually impossi­
ble) to derive formulas similar to (71)–(75) and construct the equality of 
type (4). Secondly, it proves to be feasible only at the essential approxima­
tion of the obtained analytical relations. This makes clear the difficulty of 
applying the nonequilibrium thermodynamics models to solution of 
sophisticated computational problems because of inevitable low accuracy 
of the obtained results in many cases. 

Surely, despite the absence of requirements to linearity of any relations 
the application of linear approximations providing convenient (from the 
computational viewpoint) statement of the problem solved at MEIS-based 
modeling is admissible. 

Simplicity of the initial assumptions in MEIS construction stipulates to 
a great extent both comparative simplicity of the mathematical apparatus 
applied and easiness of initial information preparation. Simplification of 
mathematical descriptions concerning kinetics and nonequilibrium ther­
modynamics is seen first of all in the transition from differential to alge­
braic and transcendent equations that provides sharp decrease in the 
number of used complex analytical dependences (for example, similar 
to (73)). 

Decrease of the initial information volume directly and largely 
depends on the fact that there is no need to know a complete detailed 
mechanism of the studied process. The use of MEIS with variable para­
meters (7)–(12) calls for the information on individual limiting stages only. 
Substitution of the assignment of the list of reactions by the assignment of 
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the list of substances is a main computational advantage of this modifica­
tion of MEIS. 

Certainly, determination of the composition of vectors x and y is also 
connected with solution of a series of complex problems. Appreciable 
errors in calculations can be caused by the incomplete list of the vector x 
components. If the modeled system has a gas phase, theoretically this list 
can reach astronomic sizes, since in this case xeq is an interior point of the 
polyhedron of the material balance2, which in a general case implies a 
complete set of substances formed from the elements of components y. 
Composition and sizes of the assigned list determine the possibility for 
revealing superequilibrium contents of the sought set of substances, which 
is shown in (Gorban, 1984). 

Quantitative estimates of errors in the determined numerical values of 
substance concentrations at points xeq and xext as a function of the struc­
ture and dimension of x and y are obtained with great difficulty. It is only 
clear that when we are interested in the detailed composition of products, 
it is desirable to increase this dimension with thorough choice of the set of 
components xj and yj based on the whole preliminary knowledge about 
specific features of the studied process. Such an increase will be limited by 
the possibility to analyze numerous results. However, despite the great 
sophistication of the problem of specifying a list of substances, it is solved 
much easier than the problem of specifying a process mechanism. Both the 
list of elementary reactions (that can include many hundreds and even 
thousands of elements) and the constants of their rates are hard by far to 
determine than the list and thermophysical properties of reactants of the 
studied system. 

Simplification of the solution or complete exclusion of the problem of 
dividing the variables into fast and slow is a great computational advan­
tage of MEIS in comparison with the models of kinetics and nonequili­
brium thermodynamics. The problem is eliminated, if there are no 
constraints in the equilibrium models on macroscopic kinetics. Indeed, 
the searches for the states corresponding to final equilibrium of only fast 
variables and states including final equilibrium coordinates of both types 
of variables with the help of these models do not differ from one another 
algorithmically. With kinetic constraints the division problem is solved by 
one of the three methods presented in Section 3.4, which are applied in the 
majority of cases to slow variables limiting the results of the main studied 
process. 

On the whole, simplicity of the initial assumptions and correspond­
ingly comparative simplicity of the mathematical formulation of MEIS 
allows one to include in it rather easily descriptions of the most diverse 
conditions of great influence on the results of the studied process. In 

2 If the components of x are substances, rather than their phases. 
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particular, it becomes possible to take into consideration comprehen­
sively enough constraints on kinetics; transfer and exchange of energy, 
mass and charges; fixing the parameters of the environment and in 
different zones of the modeled system. More detailed representation of 
the model, in turn, makes the comprehensive and deep analysis on its 
base more feasible and enriches both theoretical understanding of the 
considered phenomena and applied knowledge for a technologist, 
designer or constructor. 

5. EXAMPLES OF MEIS APPLICATION 

5.1 Introductory notes 

In the works devoted to study and development of MEISs numerous 
examples on their application to the analysis of various problems were 
certainly presented. They are formation of harmful substances during fuel 
combustion and cleaning of combustion products from these components, 
fuel processing, atmospheric pollution with anthropogenic emissions, sta­
tionary and nonstationary flow distribution in hydraulic systems, etc. 
These examples should illustrate practical efficiency of MEISs, their cap­
abilities for revealing specific features of the modeled process and deter­
mining directions of its improvement. 

This Section deals with the problem of MEIS comparison with the 
models of motion that was studied in the previous Section. However, 
whereas comparison was performed there on the basis of purely theore­
tical analysis, here it was made on the examples of specific objects. Com­
pared are the attainable completeness and significance of the results of 
computing experiments, and the possibility of using these results, accu­
racy of the obtained estimates for the sought characteristics of the modeled 
system, laboriousness of calculations and preparation of initial 
information. 

5.2 Isomerization 

In the works devoted to MEISs isomerization became a “through” exam­
ple for explanation of their specific features and efficiency. The example is 
simple and very obvious, since the isomerization reaction at any mechan­
ism is described by the same material balance because of invariable 
amounts of substances and elements. This fact essentially facilitates both 
analytical and graphical interpretations. 

Here the comparative analysis of MEIS characteristics will be made on 
the example of the simplest mechanism: x1 ! x2, x2 ! x3 that was consid­
ered in Section 3.5. But the applied model is supplemented with the 
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constraint on the rate of the second reaction stage, i.e., the studied problem 
is represented in the form: 

find 

max x3 ð76Þ 

subject to 

x1 þ x2 þ x3 ¼ 1; ð77Þ 

DtðyÞ ¼ fx : x � yg; ð78Þ 

kx2 � c; ð79Þ 

xj � 0: ð80Þ 
Obviously, model (76)–(80) does not require any comments. The problem 
of determining the constant c was discussed in Section 3.4 and is not 
treated additionally here. 

The stated problem is presented graphically in Figure 10. The thermo­
dynamically unattainable zones from y subject to (78) are indicated by the 
hatched area of the triangle A1A2A3 of the material balance. Besides, the 

xexttriangle contains the points xeq for final equilibrium, ~ for maximum 
concentration of x3 without constraint (79) and xext for the largest attain­
able value of the third isomer concentration with a complete system of 
constraints (77)–(80). The straight line kx2=c representing kinetic con­
straint (79) makes unattainable the part of Dt(y) to the left of it. Owing to 

Figure 10 Graphical interpretation of isomerization process. 
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extthis constraint solution to problem (76)–(80) shifts from ~x to xext (inter­
section of the straight line kx2 = c with the boundary of the unattainability 
zone near the vertex A3). It is seen by sight that xext is somewhat distant 
from the vertex A3 (the point of maximum concentration of x3 with the 

extonly constraint of the material balance) than ~x and hence the mole 
extcontent of the target product in xext is lower than in ~x . 

Even very short interpretation of the problem allows a most important 
advantage of MEIS to be indicated, namely its capability to choose and 
determine the value of the subjective parameter of order (Klimontovich, 
1997) of the modeled system. In this case the state with the maximum 
possible content of the target product of the process—x3 and correspond­
ingly, with the lowest content of “waste”, i.e., useless substances contam­
inating a produced required “valuable” commodity, is naturally thought 
to be the most ordered one. In parallel with assessment of the maximum 
concentration the computing experiments on MEIS determine conditions 
for its achievement and reveal the factors having the greatest influence on 
the results of modeled process. This becomes possible owing to the MEIS 
description in MP language (the theory of extremal problem solution) and 
capabilities of the computational mathematics as a whole (in particular, 
capabilities of making multivariant calculations with variation of both the 
values of initial parameters, and applied dependences between the para­
meters, including those specified in the nonanalytic form, and presenting 
calculation results in a convenient tabular and graphical forms). The 
example of MEIS-based analysis of the “physico-economic” self-organiza­
tion problem was treated in Section 4.2. The MEIS advantages in detailed 
analysis of attainability of the ordered states and limiting values of the 
order parameters are examined in the next Section on an example of 
nitrogen oxides formation during fuel combustion. 

Isomerization will be used as an example to explain to some extent the 
issues of comparing laboriousness of computing experiments and their 
accuracy. For the assumed process mechanism the kinetic model has the 
form: 

x1 þ x2 þ x3 ¼ 1; 

dx1 ¼ �k1x1;d
 

dx2 ¼ �k2x2 þ k1x1;d
 

x � 0: 
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Solution to this system (integrals of differential equations) is: 

x1 ¼ exp ð�k1
Þ; 

k1 x2 ¼ ½exp ð�k1
Þ �  exp ð�k2
Þ�;k2 � k1 

k2 k1 x3 ¼ 1 � exp ð�k1
Þ þ  exp ð�k2
Þ;k2 � k1 k2 � k1 

In Figure 11 the curves corresponding to these equations at k1 = 1c�1 and 
k2 = 0.5c�1(the values are chosen for the purposes of illustration, the real 
values of rate constants for the monomolecular reactions can be by many 
orders of magnitude higher). As is seen from Figure 11, at  
 !1  x3 ! 1 
and x1 ! 0, which is not allowed by thermodynamics (see Figure 10). The 
results of kinetic and thermodynamic analysis could surely be coordinated 
by including the reverse reactions in the considered mechanism: x2 ! x1 

and x3 ! x2 and assigning for both stages the values of rate constants 
strictly corresponding to thermodynamics. For complex problems con­
cerning the studies of multistage processes such a growth of dimension­
ality can sharply increase laboriousness of computing experiments and 
cause great difficulties in preparation of initial information. The men­
tioned difficulties will increase still further, if the constraints on rates of 
transfer and exchange processes are inserted in MEIS in parallel with the 
constraints on chemical kinetics. In this case it will be necessary to harmo­
nize the values of reaction rate constants and the values of constant 
coefficients in the equations of Fourier, Fick, Navier-Stokes, etc. 
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Figure 11 Curves of the kinetic equations for isomerization process. 
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If we refuse to excessively increase dimensionality and laboriousness 
of kinetic descriptions, their accuracy can turn out to be lower than the 
accuracy of the MEIS-based estimates. This was just the case for the 
considered example, when the results of solving kinetics equations proved 
to be contradictory to the thermodynamics laws. Needless to say that the 
accuracy of thermodynamic modeling can be improved unlimitedly by 
increasing the number of constraints on the macroscopic kinetics. Figure 10 
shows that solely constraint (79) in model (76)–(80) sharply decreased 
Dt(y). However, it should be understood that the increase in accuracy 
leads to partial or complete loss of such a traditional advantage of thermo­
dynamics as simplicity and possibility of constructing geometrical inter­
pretations of the models applied. 

While assessing comparative advantages of the equilibrium thermo­
dynamic modeling, one should remember that with any possible and 
obligatory expansion of the area of thermodynamics applications and 
the increasing fruitfulness of thermodynamic modeling it can never sub­
stitute and make useless the motion models which determine the rate and 
time of process course in physicochemical and engineering systems. 
Kinetics will be always a significant element in designing and constructing 
diverse engineering objects and studying natural processes. 

5.3 Formation of nitrogen oxides during coal combustion 

This example belongs to a highly complex physicochemical system. It 
reveals capabilities of equilibrium thermodynamic modeling of such a 
purely irreversible process as coal combustion. The calculation using the 
traditional MEIS (Gorban et al., 2001, 2006; Kaganovich et al., 2006c) 
shows that the global equilibrium reached by such a system gives rise to 
formation of a great amount of NO. In practice, however, such amounts of 
nitrogen oxides are not formed and this fact is indicative of the system 
transition only to the intermediate equilibrium state because of kinetic 
factors (bonds). Hence, model (7)–(12) is applicable to study this system. 
In the model condition (10) for kinetic constraints should be written in the 
thermodynamic form by using time as a parameter that is determined by 
technological characteristics of the system (length of the reaction path, 
flow rates) and the scales of microscopic inhomogeneities of the reaction 
space. For this purpose it is sufficient to analyze only limiting stages of all 
basic mechanisms out of numerous chemical reactions that participate in 
NO formation during coal combustion. Note that by virtue of their sig­
nificance these processes are studied in sufficient detail and the informa­
tion on kinetic coefficients is most reliable (Warnatz et al., 2001). The basic 
mechanisms of NO formation will be described below in short. 

Fuel Nitrogen Oxides, according to the current views, are produced 
from nitrogen-containing compounds of coal in the initial section of torch 
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at the temperature 900–1,000 K. Transformations of the fuel nitrogen in the 
process of thermal destruction of the nitrous substances of the organic coal 
mass (OCM) can be represented by a simplified scheme: 

NðcarbonÞ ! CN ! NCO ! NH ! N ! NO: ð81Þ 

All these transformations take place in the region beyond the surface layer 
of the coal particle, where the gas phase is enriched with oxygen owing to 
intensive turbulent mixing. The final stage in the chain is NO formation 
from the monatomic nitrogen by the reactions: 

N þ OH ! NO þ H; ð82Þ 

N þ O2 ! NO þ O: ð83Þ 
In the oxidizing medium they are more preferable than other reactions 
bonding active nitrogen (for example, N + NH ! N2 + H). Therefore, 
according to some data in (Warnatz et al., 2001) up to 70% of fuel nitrogen 
is converted to NO by this scheme, which makes up on the average 5–7 kg  
per ton of fuel burnt. The competitive reaction decreasing nitrogen oxide 
formation in this region is: 

N þ NO ! N2 þ O: ð84Þ 

The process, in the course of which volatile nitrogen-containing compo­
nents of OCM leave the coal particle and break down to the nitrile radicals, 
is a limiting stage of this mechanism. This process is presented in scheme 
(81) as N(carbon) ! CN. 

Thermal Nitrogen Oxides start to form virtually in the same reaction 
space region as the fuel ones during fuel combustion. According to the 
Zeldovich mechanism formation of fuel nitrogen oxides includes elemen­
tary reactions (82) and (83) and reactions of active nitrogen generation in 
this region from atmospheric nitrogen: 

O þ N2 ! NO þ N: ð85Þ 

Reaction (85) is limiting in this mechanism and has high activation energy 
(about 318 kJ/mole (Warnatz et al., 2001) ) because of the strong triple 
bond in the nitrogen molecule. For this very reason the probability of 
reaction (84) reverse to (85) is high (activation energy is some 27 kJ/mole 
Warnatz et al., 2001) ), which causes the NO content in the low tempera­
ture zones to decrease. 

Prompt Nitrogen Oxides emerge because of the lack of oxidizer in the 
reaction medium. Their formation (Fenimore mechanism) is based on the 
following reactions: 
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CH þ N2 ! HCN þ N; ð86Þ 

HCN þ 2O ! NO þ CO þ H: ð87Þ 

When burning coal and volatiles, by virtue of diffusion limitations on 
delivery of oxygen molecules to the reaction surface the oxidizer deficit 
occurs close to the coal particle surface, which leads to formation of a 
considerable amount of CH radicals. In parallel the atmospheric nitrogen 
appears in this region, which favors the course of reaction (86). In the case 
of strong turbulization of the reaction space the rate of molecular diffusion 
limits oxygen (as well as nitrogen) access into the turbulent vortex of 
volatile hydrocarbons, whose size is 10�4 m. Therefore, reaction (86) can 
be supposed to proceed basically in the surface layer, where generation of 
the CH particles from the volatile components of OCM to the reaction 
region will be a limiting stage. The products of this reaction pass to the gas 
phase, where hydrogen cyanide is oxidized in accordance with (87) with a 
low potential barrier and the nitrogen radical N can participate in reac­
tions (82)–(84). 

NO Formation from Dinitrogen Oxide (Nitrous Oxide) takes place 
during combustion of gaseous hydrocarbons of volatiles in the case of lean 
mixtures. In accordance with this mechanism at first the dinitrogen oxide 
N2O is formed by the termolecular reaction: 

N2 þ O þ M ! N2O þ M; ð88Þ 

(M—any particle), then the molecule N2O interacts with the oxygen atom: 

N2O þ O ! 2NO: ð89Þ 

This mechanism of NO formation is believed to be basic for burning 
lean mixtures, when the Fenimore mechanism is already inefficient 
because of absence of CH radicals. Reaction (88), being termolecular, 
notably accelerates at high pressures and is considered to be limiting in 
this case. Relatively low activation energies of reactions (88) and (89) 
make this mechanism responsible for nitrogen oxides formation at low 
temperatures and pressure of several MPa, when the thermal nitrogen 
oxides are not virtually formed. Since coal is burnt, as a rule, at the 
pressure close to atmospheric, this mechanism may not be considered 
below. 

The presented brief survey of basic mechanisms of NO formation 
during coal combustion allows the MEIS construction with their simulta­
neous inclusion in the kinetic constraints. Kinetic constraints can be for­
mulated according to the third way among those considered in Section 3.4. 
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However, several general principles in derivation of multifactor con­
straints in MEIS should be underlined. 

Different limiting processes in the form of kinetic constraints in one 
thermodynamic model can be taken into account by representing the 
modeled system as two subsystems—slow and fast. A slow subsystem 
naturally includes all the limiting stages of different mechanisms and the 
related processes in the form of a closed system of autonomous kinetic 
equations. As far as there are usually few limiting processes even in 
complex physicochemical or other modeled objects, construction of such 
a system and its solution (analytical or numerical) generally causes no 
difficulties. Moreover, since we consider conditions for limitation of the 
thermodynamic attainability region, part of kinetic equations can be sub­
stituted by algebraic ones based on the upper (lower) estimates of some 
variables. This procedure is even necessary, if the kinetic curves of any 
components are nonmonotonic. Separate points of the phase trajectory of 
the slow subsystem (i.e., its states) that is obtained by solving the equa­
tions correspond to some time parameters of a real object, e.g., the time of 
passage of the reaction mixture through the flow reactor or the time of 
diffusion through the boundary layer in the heterogeneous process. If we 
take these time parameters on the phase trajectory as constant, i.e., limit it 
on the path to attaining a global equilibrium as a system of inequalities 
(10) in model (7)–(12), the region of thermodynamic attainability will be 
constrained for the whole system. In this case several points of constraints 
for different components of the slow subsystem that correspond to differ­
ent time scales of the limiting processes can be analyzed simultaneously 
on one phase trajectory. Thus, for the kinetic limitation of the thermody­
namic attainability region MEIS applies separate states of the slow sub­
system that belong to its phase trajectory. 

Based on the above said, MEIS intended for study of nitrogen oxides 
formation in the process of torch combustion of coal at constant P and T 
can be written as follows: 

find 

max xNO ð90Þ 

subject to 

Ax ¼ b; ð91Þ 

DtðyÞ ¼ fx : x�yg; ð92Þ 

X
G ¼ Gjxj; ð93Þ 

j 
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xj �ci; ð94Þ 

xj � 0: ð95Þ 

Expression (94) in this model is a system of kinetic constraints for compo­
nents of the reaction medium. 

Constraints (94) will be determined through the rates of NO and N 
formation on the basis of reactions (82)–(87). Here account will taken of the 
above assumption that in the mechanism of forming prompt nitrogen 
oxides reaction (86) proceeding under oxidizer deficit in the surface layer 
of the coal particle is limiting and further all the hydrogen cyanide converts 
to NO beyond this region at oxygen excess. This assumption is sound 
owing to the low activation barrier of reaction (87) (E 	 25.6 kJ/mole). 

dxNO ¼ k ð82 Þ xNxOH þ k ð83 Þ xNxO2 þ k ð85 Þ xOxN2 þ k ð86 Þ xCHxN2 � k ð84 Þ xNxNO; ð96Þd
 

ð97Þ dxN ¼ k ð85 Þ xOxN2 þ k ð86 Þ xCHxN2 � k ð82 Þ xNxOH � k ð83 Þ xNxO2 � k ð84 Þ xNxNO;d
 

Since generation of the atomic nitrogen is a limiting stage in the process of 
NO formation in these conditions, we can suppose that in terms of other 
faster reactions the equilibrium condition dxN =d
 ¼ 03 is satisfied for it 
(xN here is some equilibrium value of nitrogen radical content in the 
reaction region). Then the rate of nitrogen oxide formation (96) can be 
written as the equality: 

dxNO ¼ 2xN k ð82 Þ xOH þ k ð83 Þ xO2 : ð98Þ
d
 

System (97)–(98) comprises the following unknowns: xNO, xN, xOH, xCH, 
xO2

, xN2
. Hence, four equations more should be added to make it closed. 

The relations for the molecular nitrogen and oxygen are most easily 
represented as an estimate of the upper boundary of their amount: 

xO2 � yO2 ð99Þ 

and 
xN2 � yN2 : ð100Þ 

Assuming that under high humidity of the reaction mixture the OH 
content is controlled by the reaction: 

H þ OH>H2O; ð101Þ 

3 This condition is also true for other short-lived radicals: O, ON, SN, etc. 
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that belongs to the “fast” subsystem, one more equality can be added to 
Equations (97)–(98): 

� �0:5 xOH ¼ Kp ð101 Þ xH2O ; ð102Þ 

and the relation 

xH2O �yH2O: ð103Þ 

Let us note that Equations (102), (103), and (107) supplement the immedi­
ate use of kinetic equations for formulation of inequality (94) with a 
“thermodynamic approach” (see Section 3.4). 

The quantities xN and xCH will be determined based on the following 
facts. In the sequence of fuel nitrogen oxides formation (81) all the stages, 
except for the first, proceed without the activation barrier and as a first 
approximation they can be taken as fast with respect to the rate of volatiles 
burning. Assuming that under these conditions according to reactions (85) 
and (86) the key supplier of active nitrogen to the gas phase is nitrogen-
containing components of coal organic matter and CH radicals, we will 
write the relations for the rates of forming xN and xCH

4: 

dxN dxNðcarbonÞ¼ þ k ð85 Þ xOxN2 þ k ð86 Þ xCHxN2 ; ð104Þ
d
 d
 

dxCH dxCHðcarbonÞ¼ : ð105Þ
d
 d
 

In these expressions the quantities xN(carbon) 
are active nitrogen and xCH(carbon) 

and CH radicals supplied to the reaction from organic matter of coal, the 
second term in the right-hand side of (104) corresponds to the mechanism 
of forming the thermal (85) and prompt (86) nitrogen oxides. Since one 
more unknown xO appears in Equation (104), the system should be sup­
plemented with the relation determining it. It can be obtained from the fast 
reaction: 

O þ O>O2; ð106Þ 

which can limit the number of O radicals as a first approximation. Then: 

xO ¼ Kp ð106 Þ xO2 

�0:5 
: ð107Þ 

Integration of (98), (104), and (105) with an account of (99), (100), and (103) 
results in the following system of inequalities: 

4 These rates are not equal to zero at the time intervals less than 
D (see below). 
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 f )xNO � 2xN k ð82 Þ xOH þ k ð83 Þ yO2 j0 

xN �xNðcarbonÞ þ k ð85 Þ xOyN2 þ k ð86 Þ xCHyN2 j
0 
D 

� � : ð108Þ �0:5 �0:5 xOH � Kp ð101 Þ yH2O ; xO � Kp ð106 Þ yO2 

xCH �xCHðcarbonÞ 

Here 
 f —the time of complete burning of volatile components of coal (Ots, 
1977): 

Ef � 

 f ¼ kf 

�1exp ln 
� þ 0:01Vdaf ; ð109Þ

RT 

where �—a coefficient of excess air; Vdaf —content of volatiles in coal; kf 
and Ef—variables depending on the statistic characteristics of coal particle 
sizes. At the values of T = 1500 K, a = 1.2 and Vdaf = 47% the time interval 

 f accounts for approximately 0.02 s. The parameter 
D characterizes the 
time of diffusion of pyrolysis components from the coal particle surface 
into the turbulent reaction region and along with the chemical kinetics 
reflects the possibility of accounting for limiting processes of transfer in 
MEIS like it is done in (Ots, 1977). For the assumed initial parameters of 
the model 
D 	 3
10�4 s the “thermal” summand in (104) will be small 
because of diffusion-limited supply of oxygen atoms to the surface layer 
and mainly because of high concentration of such active reducing radicals 
in this layer as H, CH, CH2, etc. These radicals have no activation barrier, 
when they interact with oxygen, and will reduce the probability of course 
for reaction (85) practically to zero. Therefore, this summand can be 
neglected in calculations. 

The quantities xN(carbon) 
can be determined from the follow-and xCH(carbon) 

ing relations: 

xNðcarbonÞ �NðcarbonÞkdaf Kf ð110ÞN 

�HðcarbonÞkdaf ð111ÞxCHðcarbonÞ CHKf 

kdafwhere N(carbon) and H(carbon)—the number of these elements in coal; CH 
kdafand —coefficients for the composition of volatiles; Kf—a coefficient N 

that determines the share of volatile substances moving from the coal 
particle to the gas phase for the time interval 
D. The quantity Kf can be 
calculated from the relation (Ots, 1977): 

� � � ���
Kf �=0:01Vdaf 1 � exp �kf 
Dexp �Ef=RT : ð112Þ 

Conceivably, in the limit all nitrogen of coal organic matter in the 
kdafburning zone of volatiles turns into the active state, i.e., ¼ 1. The N 
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kdafquantity can be determined using an auxiliary MEIS which deter-CH 
mines max xCH and the composition of volatiles as an initial vector y. Then  
kdaf CH ¼ xext CH =HðcarbonÞ. Use of the auxiliary model as the use of Equations 
(102), (103), and (107) supplements the kinetic deduction (94) with a 
thermodynamic one. 

System (108) determines constraints on nitrogen oxide formation on 
the basis of the three indicated mechanisms. Formation of thermal NO, 
however, continues after the burning of volatile components of coal up to 
some decrease in the reaction medium temperature5. Therefore, the right-
hand side of the first inequality of system (108) should be supplemented 

xtermwith the quantity —the amount of thermal NO formed in the whole NO 
high temperature region of the torch: 

xterm ¼ 2k ð85 Þ xOyN2 j

 fb ; ð113ÞNO 

where 
b—the mean time of reaction mixture passage through the com­
bustion chamber. Thus, the key kinetic constraints of the model that 
simultaneously describe three basic mechanisms of NO formation are 
determined. Finally, based on the aforesaid the system of constraints (94) 
is transformed in the following way: 

� � � � �� )

 f 
b � 
 f ;xNO �2 xN k ð82 Þ xOH þ k ð83 Þ yO2 þ k ð85 Þ xOyN2 

x N �NðcarbonÞkdafKf þ k ð85 Þ xOyN2 þ k ð86 Þ xCHyN2 
D; � � ð114Þ N �0:5 �0:5 xOH � Kp ð101 Þ yH2O ; xO � Kp ð106 Þ yO2 ; 

xCH �HðcarbonÞkdaf CHKf : 

It is easily seen that this system is linear with respect to the variables xj. 
The studies on NO formation by the traditional MEIS have been 

performed at Melentiev Energy Systems Institute for a long time. In 
parallel with MEIS the use was made of kinetic models and full-scale 
experiments that  assisted in turn to gain information  for variant  calcu­
lations on MEIS. The results of these calculations allowed the condi­
tions for nitrogen oxides formation by different mechanisms to be 
determined and the ways for improvement of coal combustion 
technology to increase environmental safety of boiler units to be 
outlined. 

Figure 12 presents the results of calculations on model (90)–(95) (curve 
7) in comparison with those performed earlier (Gorban et al., 2001, 2006) 
and experimental data. As is seen from the figure the calculations on the 
new model were in good agreement with the earlier results and proved to 
be even closer to experimental volumes of NO emissions by pulverized-
coal boilers. 

5 The quantity of thermal oxides sharply falls at T below 	1400 K. 
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Figure 12 Theoretical and experimental NO emissions at coal combustion that were 
calculated by model (90)�(95) (curve 7) and presented in the work by Gorban (2001, 2006): 
equilibrium (1), maximum (2); actual (3�6): fluidized bed combustion (3), low-temperature 
combustion of brown coals (4), high-temperature combustion of hard coals (5), averaged 
for coal-fired boilers (6); A—“prompt” NO, B—“fuel” NO, C—“thermal” NO. 

Somewhat overestimated calculation results in comparison with the 
in-situ measurements in a low-temperature region are explained probably 
by the fact that the model does not take into account NO reactions 
with nitrogen of reduced forms such as NH, NH2, NH3, etc., for example, 
NO+NH2!N2+H2O or NO+NH!N2+HO that are typical of compara­
tively low temperatures (Warnatz et al., 2001). 

At the same time calculations on the modified MEIS are possible with­
out additional kinetic models and do not require extra experimental data 
for calculations, which makes it possible to use less initial information and 
obviously reduces the time and labor spent for computing experiment. 
Furthermore, there arise principally new possibilities for the analysis of 
methods to mitigate emissions from pulverized-coal boilers, since at sepa­
rate modeling of different mechanisms of NO formation the measures 
taken can result in different consequences for each in terms of efficiency. 
Consideration of kinetic constraints in MEIS will substantially expand the 
sphere of their application to study other methods of coal combustion 
(fluidized bed, fixed bed, etc.) and to model processes of forming other 
pollutants such as polyaromatic hydrocarbons, CO, soot, etc. 

The advantage of thermodynamic models of such complex processes 
as coal combustion over kinetic ones can be clearly understood, if we 
briefly deal with the current problems of kinetic description of this process 
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(Warnatz et al., 2001) and compare it with the described thermodynamic 
approach. 

Coal burning is associated with three basic interrelated processes: coal 
pyrolysis, burning of volatiles and burning of coke. The kinetic model 
must include all these processes combined by the material and energy 
balances. In the thermodynamic model dealing with states it is sufficient to 
estimate limiting stages. To take into account, for example, pyrolysis it is 
enough to know only the rate of volatiles yield that can be calculated, as 
was shown, from the semi-empirical or even empirical relations. Kinetic 
description of pyrolysis requires that the chemical mechanism of the 
process and the diffusion coefficients on the coal particle surface and in 
the surface layer be known. Since the molecular chemical composition of 
coal used is not known exactly, even the listing of chemical reactions is a 
very complex scientific problem up to now. One can only guess the 
diffusion coefficient values, in so far as their measurement or theoretic 
description is extremely sophisticated and unreliable because of inhomo­
geneity and variation of coal particle surface during combustion. Note that 
this change should also be taken into consideration in the kinetic model. 
Hence even the first stage of coal combustion—pyrolysis—can be 
described only by the rough empirical (in the best case—semi-empirical) 
kinetic models that are true only in a narrow range of conditions typical of 
specific cases. 

In MEIS there is no need to describe the process of volatiles burning. 
Their preset composition is limited by the dimension of vector x, and can 
be increased to several hundreds of components, which virtually does not 
affect model complexity but somewhat increases the time of calculations. 
The results obtained allow the estimation and withdrawal from the vector 
x of the components of low impact on the calculation results. In the 
calculations we used 68 chemical components. In the kinetic model uncer­
tainty in the composition of volatile substances makes it impossible to 
describe in detail their combustion based on the elementary kinetics. The 
description in this case should also include processes of evaporation from 
the particle surface and diffusion. As a rule the parameters of these 
processes are unknown as well. 

And finally, the coke burning is a heterogeneous process. Its modeling 
includes description of the processes of molecule adsorption on the surface, 
surface reactions, desorption of reaction products, diffusion through the 
pores and diffusion to the particle surface. At present the majority of these 
processes for coke are relatively poorly known. The key distinction of 
surface reactions from reactions at the gas phase consists in the necessity 
to attract for description of their rates such notions as surface active centers 
and adsorbed particles. And in the kinetic models a different nature of 
active centers (different energy of dislocations) necessitates consideration 
of the same particles adsorbed on them as different compounds because of 
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different constants of the surface rates. In MEIS different phase states are 
assigned to such particles, which leads only to the increasing dimension of 
component composition. In contrast to the constants of surface reaction 
rates, whose theoretical calculation is a rather complex problem and prac­
tical measurements have a low reproducibility, the thermodynamic para­
meters can be determined with a sufficiently high degree of accuracy from 
the spectral data and statistical calculations (Adamson and Gast, 1997). 

From the above said, it may be concluded that a detailed kinetic model 
of coal combustion process that combines all three basic processes can not 
virtually be constructed, as it is impossible to do for each process sepa­
rately. Therefore, the empirical models based on separation and experi­
mental study of the limiting stages are extensively used. Such models 
separately do not reveal general regularities and do not allow the general­
ized conclusions to be drawn. The thermodynamic model makes it possi­
ble to study the whole attainability region and hence to consider states of 
the considered system as a whole and to keep track of the variation in the 
amounts of any component as a function of some or other kinetic con­
straints. The latter are written, as was shown above, easily enough even 
for such complex processes as coal combustion. 

Advantages of the MEIS-based modeling of such complex chemical 
processes as nitrogen oxides formation at coal burning in comparison with 
the models of nonequilibrium thermodynamics prove to be even more 
clear and significant than its advantages compared with kinetic analysis. It 
is sufficient to mention only several facts. If the process mechanism is 
unknown, its analytic description required by the nonequilibrium thermo­
dynamics is impossible. Formalization of constraints on duration of indi­
vidual stages and concentrations of individual components seems to be 
highly difficult. For some transfer processes it is very hard to determine 
formulas for the Onsager coefficients such as for diffusion in the multi­
component medium. The assumption on linearity of motion equations will 
certainly adversely affect the accuracy of calculations. 

5.4 Stationary flow distribution in hydraulic circuits 

The analysis of stationary and nonstationary flow distributions in multi-
loop hydraulic systems with lumped, regulated, and distributed para­
meters and in heterogeneous systems was given in (Gorban et al., 2001, 
2006; Kaganovich et al., 1997). In the concluding section of Section 5 the 
abundant capabilities of the flow MEIS are illustrated by the simplest 
example of stationary isothermal flow distribution of incompressible 
fluid in the three-loop circuit. It is shown how the degrees of order 
(laminar or turbulent modes) on the branches of this circuit are deter­
mined from calculation of the final equilibrium. 
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Figure 13 A scheme of the hydraulic circuit. 1�4—
the circle—a source of effective pressure; the arrows specified directions of flows in the 
branches. 

the numbers of nodes; the arrow in 

The design diagram of the hydraulic system is presented in Figure 13. 
The pressure generated by the pump Pmov (2 MPa) and characteristics of 
branches (pipe lengths and diameters, coefficients of resistances �i) are 
given. 

The model of final equilibrium (13)–(17) for the assumed conditions 
has the form:find ! X

max DS ¼ T � 1 Pbr 
i xi ð115Þ 

i 

subject to 

Ax ¼ 0; ð116Þ 

6 

Pmov Pbr 
X

xi � i xi ¼ 0; ð117Þ 
i ¼ 1 

Pbr �¼ �ixi ; i ¼ 1; … ; 6; ð118Þj 

where the exponent � in (118) is taken equal to unity for the laminar mode 
and to 2 for the turbulent mode. The sum in the parenthesis of the 
objective function equation (115) is the total kinetic energy of fluid flows 
that is converted into heat and then transferred to the environment. The 
results of flow distribution calculations are presented in Table 1. 

Table 1 shows that with the equilibrium stationary flow distribution 
that corresponds to the maximum entropy of an isolated system 
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Table 1 Results of flow distribution calculation 

Branch �i DPi, MPa xi, m
3/s � 

1–2 
2–3 
2–4 
1–3 
3–4 
1–4 

1.00 � 10�2 

1.56 � 10�3 

2.50 � 10�2 

1.25 � 10�2 

1.00 � 10�1 

4.22 � 10�1 

1 
0.1 
0.05 
0.9 
0.05 
0.95 

10
8 
2 
8.5 
0.5 
1.5 

2 
2 
1 
2 
1 
2 

Note. The dimension of � is not indicated because of its dependence on the value �. 

 

(a combination of the circuit and the environment) and the minimum 
energy dissipation in a circuit (see Section 2.3) we have a quadratic closing 
relation (the turbulent flow mode) on four branches and a linear relation 
on two branches (the laminar mode). Thus, this example reveals the 
possibility of assessing the levels of order (self-organization) in individual 
elements (subsystems) of complex systems by means of the models of 
thermodynamic equilibria. As is known, in the nonequilibrium thermo­
dynamics and synergetics the turbulent mode is believed to be more 
organized than the laminar one. 

It should also be noted that the Prigogine theorem on the minimum 
entropy production is applicable to the circuit as a whole and for its 
individual branches (open subsystems). Actually, the maximum amount 
of entropy is formed in the environment owing to heat transfer to it from 
the hydraulic circuit. In the circuit itself the energy imparted to the fluid is 
entirely spent on its motion along the branches, i.e., on performance of 
effective work, and the entropy production at given conditions of interac­
tion with the environment takes its minimal value equal to zero. The 
minimality of DSi was shown in (Gorban et al., 2001, 2006). 

6. CONCLUSION: WHAT WE HAVE AND WHAT WILL BE? 

In the first years of the current century a new direction was formed in 
development of the model of extreme intermediate states (Kaganovich, 
2002; Kaganovich et al., 2004a, 2004b, 2005a, 2006a, 2006b, 2006c) that is 
defined in this paperchapter as equilibrium macroscopic modeling of 
nonconservative systems. The described attempts to generalize and 
develop the studies presented in (Kaganovich, 2002; Kaganovich et al., 
2004a, 2004b, 2005a, 2006a, 2006b, 2006c) allow the progress achieved on 
this path to be assessed. 
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The following problems were solved as a first approximation. The 
capabilities of equilibrium macroscopic modeling of irreversible processes 
in chemical transformations and mass and energy transfer, reduction of 
motion models to rest models (states) were revealed. 

The possibility to address kinetic constraints within a thermodynamic 
model (MEIS) unfolds the ideas first suggested in thermodynamic analysis 
of kinetic equations (Feinberg, 1972, 1999; Feinberg and Hildebrant, 1997; 
Feinberg and Horn, 1974; Gorban, 1984; Horn, 1964; Horn and Jackson, 
1972). MEIS modifications with variable parameters and variable flows 
and also of spatially inhomogeneous systems were created. They include 
constraints represented in the thermodynamic form (without time vari­
able) on the irreversible macroscopic kinetics. Computational problems of 
devising methods on the basis of these modifications that reduce to CP 
were somewhat solved, which made it possible to construct some relevant 
computing algorithms. 

The efficiency of MEIS modifications was tested on the examples of 
modeling and analysis of fuel combustion and processing and flow dis­
tribution in multiloop hydraulic systems. 

The capabilities of MEIS and the models of kinetics and nonequili­
brium thermodynamics were compared based on the theoretical analysis 
and concrete examples. The main MEIS advantage was shown to consist in 
simplicity of initial assumptions on the equilibrium of modeled processes, 
their possible description by using the autonomous differential equations 
and the monotonicity of characteristic thermodynamic functions. Simpli­
city of the assumptions and universality of the applied principles of 
equilibrium and extremality lead to: the lack of need in special formalized 
descriptions that automatically satisfy the Gibbs phase rule, the Prigogine 
theorem, the Curie principle, and some other factors; comparative simpli­
city of the applied mathematical apparatus (differential equations are 
replaced by algebraic and transcendent ones) and easiness of initial infor­
mation preparation; possibility of sufficiently complete consideration of 
specific features of the modeled phenomena. 

At the same time the indicated valuable results may be treated only as 
a groundwork for further more versatile studies in comparison with the 
performed ones. The increasing versatility is due to more detailed com­
parison of MEIS with each of the basic macroscopic disciplines dealing 
with studies on the motion trajectories: chemical kinetics (Feinberg, 1972, 
1999; Feinberg and Hildebrant, 1997; Gorban, 1984), theory of dynamic 
systems (Arnold, 1989; Katok and Hasselblatt, 1997), synergetics (Haken, 
1983, 1988), nonequilibrium thermodynamics (Glansdorff et al., 1971; 
Kondepudi et al., 2000; Prigogine, 1967; Zubarev, 1998); finite time ther­
modynamics (Rozonoer L et al., 1973; Tsirlin, 2006) and with physico­
mathematical description and analysis of the main transfer processes; heat 
and mass exchange, electric current, radiation, including such phenomena 
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as thermal diffusion, Dufour effect, electrokinetic and thermoelectric pro­
cesses; and with computational problems arising because of nonlinearity 
and nonautonomy of equations that describe constraints on the macro­
scopic kinetics; and with the solution of a large number of specific theore­
tical and applied problems. 

Special attention should be paid to determination of the role of the 
discussed scientific direction in the recently formulated more general 
direction—“Model Engineering” (Gorban, 2007; Gorban and Karlin, 
2005; Gorban et al., 2007). The technology developed there makes it 
possible to choose an initial formalized problem statement that would be 
optimal from the standpoints of calculations and analysis. The best for­
mulations are searched for based on the reduction of the known equations 
of statistical physics, physical kinetics, or some macroscopic theories. 
Analysis of equilibrium thermodynamic modeling within the “technol­
ogy” in general requires that the possibilities of such modeling as the 
ultimate method of reduction—transformation of the models of motion 
to the models of rest be estimated. 

The list of the most important problems to be solved during further 
studies is presented in the following pages. Let us briefly comment upon 
this list, paying attention to the facts that are not described or almost not 
described in this chapter. The first group of problems (1–4) deals with the 
determination of fundamental capabilities of macroscopic models of equi­
libria in the study of irreversible processes. Whereas in the performed 
studies of MEIS the formalism of the motion and rest (equilibrium) the­
ories was compared exclusively at the macroscopic level, in the future it is 
intended to obligatorily reveal MEIS relationships with statistical physics 
and physical kinetics. Analysis of admissibility of equilibrium approxima­
tions should become important in the statistical microscopic substantiation 
of state models for devising macroscopic equations from the initial prob­
abilistic descriptions. Mathematical substantiation is based on the consid­
eration of a wide scope of problems: from application of differential 
calculus as a whole (note that the infinitesimal changes of heat and work 
are not in general differentials) to the possibility of using autonomous 
differential equations and MP. Special analysis of correctness of equili­
brium descriptions of explosions, hydraulic shocks, and other similar 
apparently irreversible processes seems to be needed, at least to be sure 
of the admissibility of equilibrium interpretations of “less nonequilibrium” 
phenomena. 

The second group of problems (5–8) is associated directly with MEIS 
construction. Here the main goal for the future is to expand directions of 
analysis of the formalized descriptions of transfer processes, whose neces­
sity was underlined above. Of particular interest are the studies on inter­
relations between thermal, electric, and chemical phenomena (the cross 
effects). Greater attention to transfer processes should be paid in 
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geometrical interpretations of MEIS. The idea of using a thermodynamic 
tree in the analysis of both chemical and macroscopic kinetics as a whole is 
also attractive. 

The computational problems of the third group (9–16) inevitably 
stem from the conditions of solving the problems of the first and second 
groups. Analysis of situations, when a high irreversibility level compli­
cates application of the notion of function differential and especially the 
CP methods (items 10 and 13), is considered as the greatest extent of 
novelty here. 

Certainly, the list of specific problems of the fourth group may be 
extended unrestrictedly. The authors favored the problems concerning 
the energy research area they are engaged in. The problem of MEIS 
creation for an economic system (item 21) that was dwelt on in Section 
4.2 is undoubtedly of interest from the viewpoint of assessing the capabil­
ities of equilibrium thermodynamic modeling and revealing the identity in 
description of physical and socio-economic regularities. 

All 29 enumerated problems can be solved on the basis of long-stand­
ing studies of many experts. However, we hope that even partial perfor­
mance of the stated tasks will make the models and methods of the 
present-day equilibrium thermodynamics the property of a wide circle of 
researchers and engineers and they would find extensive application in 
the basic and applied science. 

7. PROBLEMS OF EQUILIBRIUM THERMODYNAMIC 
DESCRIPTIONS OF MACROSCOPIC NONCONSERVATIVE 
SYSTEMS 

7.1 Substantiation of the capabilities of equilibrium descriptions 
and reduction of the models of irreversible motion to the 
models of rest 

1.	 Comparison of MEIS capabilities (equilibrium descriptions) with 
capabilities of kinetics, theory of dynamic systems, nonequilibrium 
thermodynamics, synergetics, thermodynamic finite time, and 
thermodynamic analysis of motion equations. 

2.	 Statistical substantiation of MEIS. MEIS relations with equilibrium 
and nonequilibrium statistical thermodynamics and physical 
kinetics. 

3.	 Choice of the mathematical apparatus of macroscopic equilibrium 
descriptions. Problems in modeling the nonholonomic, 
nonscleronomous, and nonconservative systems. Possibilities for 
using differential equations (autonomous and nonautonomous) 
and MP. 
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4.	 Reduction of the motion models to the rest models and determination 
of their role in the general model engineering. Transformation of the 
equations of irreversible macroscopic kinetics. Equilibrium 
description of explosions, hydraulic shock, short circuit, and other 
“supernonequilibrium” processes. 

7.2 Analysis and development of MEISs 

1.	 Comparison of MEISs with traditional methods of equilibrium 
thermodynamics. Initial physico-mathematical assumptions. 
Physico-mathematical characteristics. Admissible and efficient 
spheres of application: physics, chemistry, engineering systems, 
biology, and socio-economic systems. 

2.	 Classification of MEISs. Models with variable parameters: with 
variable flows and spatially inhomogeneous systems; with 
constraints on the macroscopic kinetics and without them. Specific 
features of modifications and their comparative capabilities. 

3.	 MEISs and macroscopic kinetics. Formalization of constraints on 
chemical kinetics and transfer processes. Reduction of initial 
equations determining the limiting rates of processes. Development 
of the formalization methods of kinetic constraints: direct application 
of kinetics equations, transition from the kinetic to the 
thermodynamic space, and direct setting of thermodynamic 
constraints on individual stages of the studied process. Specific 
features of description of constraints on motion of the ideal and 
nonideal fluids, heat and mass exchange, transfer of electric 
charges, radiation, and cross effects. Physicochemical and 
computational analysis of MEISs with kinetic constraints and the 
spheres of their effective application. 

4.	 Geometrical interpretations of MEISs. Kinetic and thermodynamic 
surfaces. Representation of kinetics in the space of thermodynamic 
variables. Thermodynamic tree. Graphs of chemical reactions, 
hydraulic flows, and electric currents. 

7.3 Analysis of computational problems in MEIS application and 
MEIS-based devising of methods, algorithms, and computing 
system 

1.	 Computational problems of setting kinetic constraints. Development 
of methods for transformation and approximation of the motion 
equations applied. 
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2.	 Convex analysis of MEIS and determination of the areas of 
admissible and effective application of the CP methods. 

3.	 Development of methods of searching for the optimal level of a 
ext).characteristic thermodynamic function of the system G(x

Interpretation of the proposed methods on the basis of a 
thermodynamic tree. 

4.	 Development of optimization methods for systems with a variable 
composition of reagents (y = var). 

5.	 Development of optimization methods for MEIS with variable flows 
of a substance participating in chemical reactions and transfer 
processes of heat, mass, and electric charges. 

6.	 Development of optimization methods for MEIS of flow or current 
distribution in circuits. 

7.	 Devising the methods for analysis of spatially inhomogeneous 
systems, applied first of all to nonisothermal natural systems and 
installations for fuel combustion and processing. 

8.	 Creation of the computing system to perform laborious multivariant 
computing experiments with the maximum automation of man– 
machine interface. 

7.4 Solution of specific theoretical and applied problems on MEIS 

1.	 Modeling the processes of energy transfer by electromagnetic field. 

2.	 Modeling the transfer processes with available phase transitions, 
sorption, dissolution, etc. 

3.	 Description of nonstationary kinetics and transfer in spatially 
inhomogeneous systems. 

4.	 Construction of models of electrochemical processes. 
5.	 Construction of MEIS for an economic system. 
6.	 Modeling the macroscopic kinetics of forming harmful substances in 

the processes of fuel combustion and processing. 
7.	 Modeling the processes of pollution of air, soil, and water bodies. 
8.	 Construction of models of equipment corrosion. 
9.	 Modeling the slag and scale formation in energy installations. 

10.	 Construction of thermodynamic models of stationary and 
nonstationary operating mode of pipeline systems for energy 
carrier transportation. 

11.	 Construction of thermodynamic models of stationary and 
nonstationary operating mode of electric power systems. 

12.	 Modeling the air conditioning systems including release and 
transformation of harmful substances. 

13.	 Modeling the fires in buildings and installations. 
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