Conclusion

‘We never know a response to our word.
FI Tyutchev

What makes us, the authors, look to further fruitful development of the scientific
subject whose basic concepts we tried to present in the book? Replying to this
question, we can mention several encouraging factors.

First of all, we are optimistic, because the created thermodynamic models have
already been used to solve successfully a rather wide scope of theoretical and
applied problems. They are: determination of maximum possible yields of the
target products in fossil fuel conversion technologies; assessment of environmen-
tal characteristics of continuous and periodic combustion processes; analysis of
harmful substance behavior in the atmosphere; and calculation of flow distribution
in multiloop hydraulic systems.

An even greater number of unsolved problems including those manifested them-
selves in the analysis of the solved problems tell us that we have correctly chosen
this specific area of studies. By Hilbert [69], “Any scientific sphere is viable, as
long as there is an excess of new problems in it. The lack of new problems means
dying off or termination of independent development.” From the text of the book
follow some problem statements for future studies. Some examples are creation
of strictly formalized methods based on the idea of a thermodynamic tree, con-
struction of the thermodynamic model of an atmospheric aerosol, and description
of a sufficiently complete system of kinetic constraints in equilibrium models of
combustion and atmospheric pollution processes.

In our opinion the book allows a deeper understanding of the logic of thermo-
dynamics development, the link between the present-day models and the initial
ideas of its founders. Whereas the principles of inertia, relativity, and equilib-
rium established by Galilei clarified the possibility to replace description of the
uniform straight-line motion by the model of rest, the thermodynamic works by
Boltzmann and Gibbs revealed the possibility of describing processes in systems
consisting of a colossal number of elements and subject to statistical laws in equi-
librium terms. Such systems in fact take in all the macroscopic systems interacting
with the environment at fixed parameters in which the processes of substance and
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energy conversion take place. MEIS application enabled the use of potentialities
of thermodynamics (that were understood yet by Boltzmann and Gibbs) to analyze
any admissible states (complete and partial equilibria) of equilibrium systems and
the search for thermodynamic attainability regions in these systems. Interrelations
between models of motion (those including the time variable) and models of states,
as well as areas of admissible and expedient application of these models to solve
diverse physicochemical and technical problems are features that became more
clear to us as researchers.

The noted circumstances make us hope that, in parallel with development of
such acknowledged current scientific disciplines as synergetics and nonequilibrium
thermodynamics, classical equilibrium thermodynamics will enter into a new stage
of advancement.

There is also much doubt about such further favorable and desirable (for the
authors) courses of events. This is not just because the “old” sciences are not
fancy and attractive for young researchers; more to the point, if new models based
on old theories are to become accessible to a wide circle of specialists and to
find application in many research and design works, the appropriate software and
commercial computing systems will have to be created. This requires great effort of
entire teams because every new field of MEIS application calls for modification of
the key algorithms, replenishment or creation of new data banks (primarily on the
thermodynamic properties of substances), and design of special auxiliary software
regarding the objectives of the study. The authors can only partially solve the
problems that arise. In the immediate future we plan both to solve some theoretical
and methodological problems (such as construction of the thermodynamic tree on
partial graphs) and to create an effective heavy duty software for detailed analysis
of particular applied problems, such as formation of harmful substances in torch
and fixed-bed furnaces, description of processes on the surface of aerosols in the
atmosphere, and air exchange in buildings and structures in normal and emergency
(at fires) conditions.

Afterword

So far MEIS applications have been associated to a great extent with the regrettable
consequences of human activity, adverse impacts on the environment we inhabit.
We would prefer to be engaged in more pleasant calculations, for example, on
the calculation of the extent to which nature eventually recovers from damage,
a recovery owing to the skillful tending by human beings. Well, such a bright
future could be imagined allowing that these calculations be necessary. “We never
know... .
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The Model of Extreme Intermediate States (MEIS) and
Description of Nonequilibrium Irreversible Processes

Die Energie der Welt ist Constant.
Die Entropie der Welt strebt einem Maximum zu.
R. Clausius

Introductory Remarks

During the four years after the publication of the Russian edition of this book, stud-
ies on attainability regions and partial equilibria took place in the areas considered
in the book and in new areas of MEIS applications.

The new practical problems solved on the basis of MEIS included: modeling
of heating surface slugging in boiler furnaces [153]; estimation of environmental
characteristics of combustion chambers in gas turbines [87, 89]; calculation of low-
grade fuel gasification processes [103]; analysis of condensation nuclei formation
in the atmosphere [90]; and others.

The mathematical features of MEIS being analyzed include, among others:
possibilities of solution degeneracy in the search for points x™* and x&'; cases
of incompatible systems of constraints that determine D,(y); and dependence of
total Gibbs energy of the atmospheric system on the radii of the aerosols formed
in it. The problem of MEIS reducibility to the convex programming (CP) prob-
lems remains the main problem in the mathematical studies. We are now looking
for convex approximations of the problems for the cases when: the sought vari-
ables include the radii of nuclei of the forming phases; the modeled system has
Debey—Huckel solutions, and so on. The analysis of mathematical features, in
turn, becomes the basis for correction and improvement of the computational
algorithms.

Currently, the development of a commercial computational system is nearing
completion. This system is intended for thermodynamic analysis of technological
and natural processes [87] and may be applied to the problems of:

e estimating maximum energy and resource efficiency (efficiency, specific fuel

consumption, specific yield of target products and by-products) of different
industrial technologies;
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e revealing the energy-saving potential in production of energy and chemicals, oil
refining, metallurgy and other industries

¢ determining the assortment and maximum emissions of harmful substances by
technological plants under normal and emergency operation conditions

e studying the transformations of anthropogenic emissions in the atmosphere, soil
and water reservoirs.

The main direction of MEIS development is now formulation of MEIS-based
thermodynamic descriptions (those eliminating the time variable) of chemical
kinetics and transfer process. This work was encouraged, first of all, by the need to
assess the practical feasibility of the calculated x*** determined by reaction rates
and transfer of mass, energy, impulse, and charges. The problems of equilibrium
feasibility were considered briefly in Section 4.5. There we presented examples of
the impact of chemical reaction rates on the feasibility of states x°*'.

Additionally, the equilibrium description of “motions,” which is the subject of
studies in nonequilibrium thermodynamics and synergetics, is important from the
viewpoint of determining MEIS significance in modern scientific areas related to
classical thermodynamics. It is quite clear that for this new scientific concept to
become the handy tool for researchers and engineers, it is necessary not only to
give it a strictly formalized description and theoretical and experimental grounds
but to compare it with competing approaches in the area where it is applied.

Some results obtained from the analysis of MEIS containing description of
motions and its efficiency are presented below.

On the Possibility to Describe “Motions” in Terms
of Equilibrium Thermodynamics

The body of the book has already given the examples of “equilibrium” deriva-
tions of equations for nonequilibrium irreversible processes: diffusion, heat trans-
fer, hydraulic shock, etc. In the Introduction (Section 1.2) consideration was
given to the applicability of the equilibrium principle to description of the sys-
tems that may have various effects (including self-oscillations and spatial or-
dering) during their relaxation towards equilibrium. Chapter 5 shows the MEIS
applicability for the analysis of high-energy chemical processes (on the exam-
ple of plasma coal gasification) and periodic solid fuel combustion processes. In
the latter case the MEIS was applied along with kinetic models and full-scale
experiments.

However, the potentialities of equilibrium thermodynamics in studying
“motions” may most completely be revealed by analyzing the single model that
contains both a description of a monotonically changing characteristic function of
the system at issue and a description of the processes that limit the region of this
change. Before discussing such a model let us make some remarks on the history
of the equilibrium descriptions of motion. Unlike the excursus on the history that
was made in Sections 1.1 and 1.2 here we will try to focus on the principles that
will be directly used when developing new MEIS versions.
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Originally, equilibrium models were developed within classical mechanics
(Galilei, Euler, D’ Alembert, Lagrange, Hamilton). Lagrange used the Galilei and
D’Alembert equilibrium principles formalized as mechanic system equilibrium
equations to describe the integral structure of the Newtonian mechanics [118].
His derivation of the equation for the optimal trajectory, in which he integrated
this equation with respect to time, showed how he efficient the assumption of
equilibrium is for studying trajectories. Similar to how film frames show static
states of a body’s motion, giving the idea of “continuous processes,” the described
mathematical aggregates of states of rest (equilibrium) give the idea of “character-
istic trajectories.” Lagrange’s derivation made clear the applicability of the notion
of local potential (the values of the potential and its derivative at each time in-
stant are determined only by the state reached) and the description of motions by
autonomous differential equations of the form X = f(x).

The founders of thermodynamics—Clausius, Maxwell, Gibbs, and
Boltzmann—extended equilibrium principles to a description of various
physicochemical systems. The notion of equilibrium was related to the ideas of
reversible and irreversible processes and “the arrow of time.” The second law of
thermodynamics, which determines the irreversible motion of isolated systems
to the maximum of entropy, was statistically proved by Boltzmann through two
methods [21]: 1) using his kinetic equation (H -theorem); and 2) directly calcu-
lating probabilities of possible states of a system. The second method supposed
that the values of macroscopic variables that characterized an admissible state
were conditioned exclusively by the probabilities of a state’s attainability and did
not depend on the motion trajectory toward it. Therefore, the states that occur
during relaxation of the system to final equilibrium and are normally interpreted
as nonequilibrium can be considered partial equilibria (equilibrated not in
all parameters). Thus, it becomes clear that the Boltzmann trajectories toward
maximum entropy similar to the optimal trajectories of Euler—Lagrange—Hamilton
are suitable to consider as passing through a continuous sequence of equilibria.
At each point of both trajectories, there are potential functions and motion can be
described by autonomous differential equations.

Sections 1.6 and 1.3 gave examples that illustrate the efficiency of the Boltzmann
and Gibbs’ assumptions on equilibria in the analysis of irreversible processes.
Here it should be additionally noted that one of the brightest examples is the
book On the Equilibrium of Heterogeneous Substances itself [54], which presents
the first systematic description of equilibrium macroscopic thermodynamics. It
was written before the structure of statistical mechanics was completed by Boltz-
mann and Gibbs and was based on equilibrium principles borrowed from classical
mechanics.

Development of nonequilibrium thermodynamics in the second half of the 20"
century was also based on the assumption on equilibria in physical infinitesimal
volumes of media for which the thermodynamic equation is true:

TdS =dU+ PdV—) u;dx;
J
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It should be noted that, in fact, one of the main theorems of nonequilibrium ther-
modynamics (Prigogine, 1947) [56, 143] on the minimum of entropy production
in stationary states at given external conditions hindering achievement of the point
x®dhad already been used in different formulations during the “equilibrium” period
of the thermodynamics development. The Kirchhoff theorem (of 1848!) [108] on
minimum heat production in an open, passive (without sources of electromotive
forces) electric circuit can be considered a particular case of the Prigogine theorem.
Planck and Einstein used maximization of entropy and, hence, minimization of its
production, in their studies of stationary processes of irradiation, propagation, and
absorption of radiant energy.

Owing to the universal principles of classical thermodynamics and, first of all,
its second law, it is possible to determine the results of the processes in open
nonequilibrium systems. For this purpose it is necessary to integrate the studied
system with its environment and include the conditions of interaction with the latter
in the description of the isolated system obtained. The conditions of maximum
entropy in the integrated system will reveal the conditions of the equilibrium
(stationary) state of the open subsystem. An example of transition from criterion
max S in the isolated hydraulic system (model (3.33)—(3.36)) to the criterion of
min Q in the passive hydraulic circuit (model (3.10)) is given in Section 3.3. The
passive circuit described there can be considered a nonequilibrium system since
presence of sinks and inflows in the circuit tells us about the difference of potentials
(thermodynamic forces) and flows in the circuit.

The one-and-one-half-century history of equilibrium thermodynamics has re-
vealed its enormous capabilities, yet unsolved remains the problem of a non-strictly
formalized proof of the second law, related to Boltzmann’s paradox (Section 1.2).
To assess the current state of this problem let us refer to the papers by A.N. Gorban
and I.V. Karlin [61, 63] that unfolded the idea of P. Ehrenfest and T. Ehrenfest [37]
on tending of the isolated system towards the equilibrium Boltzmann trajectory
due to “agitations.”

Consider Fig. S.1 borrowed with some change from [63]. It shows graphically the
processes in an isolated system. Closed curves stand for the entropy level. Dotted
straight lines denote the states with constant values of macroscopic parameters.
The contact points of curves with straight lines are equilibrium points that meet
the equilibrium distributions. In these points entropy has maximum possible value
on the corresponding tangent. The aggregate of these points forms equilibrium
trajectory S*, along which the system moves toward the point of global entropy
maximum S™**. Curved arrows stand for isoentropy (reversible) processes caused
by reversible (elastic) interactions of particles. Straight arrows show the system
“agitations” that are explained by the deviations of some of the interactions from
reversibility and push the system to the equilibrium trajectory.

According to the presented interpretation, equilibrium processes differ princi-
pally from reversible isoentropy processes and represent at the limit (at tending
to zero time intervals between agitations) a continuous sequence of local entropy
maxima. The statement often given in manuals on macroscopic thermodynamics—
that equilibrium and reversible processes are identical—can be brought into line
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FIGURE S.1. Entropy-conserving dynamics with periodic coarse graining.

with the considered interpretation of these processes only under the assumption
on the ultimate coincidence of nonequilibrium states, located on the trajectory
S = const, and equilibrium states on the Boltzmann trajectory. In this case the
whole set of possible states in Fig. S.1 is reduced to curve S*.

The interpretation of reversible and equilibrium processes, though it probably
does not solve completely the problem of Boltzmann’s paradox, still provides
us with additional arguments on the possibility of equilibrium descriptions of
relaxation towards final equilibrium. At the same time it should be understood
that description of motion in terms of equilibria often presents the approximation
of real phenomena similar to the linear approximation of nonlinear relationships
between physical values. It follows from the interpretations of the notion “far from
equilibrium” that were considered in Section 1.2 that this approximation becomes
most complex when distributions of microscopic variables differ greatly from
equilibrium ones.

The Method Being Developed to Analyze Irreversible
Processes and MEIS Modifications that Provide
Its Application

The above analysis of a possible equilibrium description of irreversible non-
equilibrium processes can be used as the basis to formulate fundamental concepts
of the thermodynamic method to study these processes, and, first of all, to solve
applied large-dimensional problems.

The suggested method differs from the methods of nonequilibrium thermody-
namics and the thermodynamic analysis of chemical kinetics equations (see Section
1.5). The method does not directly apply the equations of processes, but examines
only equilibrium states attainable from the given initial point, assuming that any
possible path to final equilibrium is a continuous sequence of equilibrium states.
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These states do not depend on the prehistory of their attainment and the time vari-
able can be excluded from their description. Correspondingly, the nonequilibrium
states are interpreted as states of intermediate partial equilibria.

Along with the indicated physical assumptions, mathematical assumptions
on convexity (concavity) of the characteristic thermodynamic function and
convexity of the system of constraints—i.e., on reducibility of the problem solved
to one of convex programming—are made. Reducibility can also be reached by
approximation of the used mathematical expressions. When the constraints on
kinetics and transfer processes are applied, in addition to the other constraints,
these processes are presumed to satisfy autonomous differential equations of type
X = fx).

The time variable can be excluded from motion descriptions by two procedures.
The first is dealt with in Section 1.5 and in [87, 89]. By this procedure, variables
on the right-hand sides of autonomous equations are represented as functions of
thermodynamic potentials and then the transformed right-hand sides are substituted
into the expression for the overall characteristic thermodynamic function of the
system. A condition of the monotonic change of the latter is included in MEIS,
and its corresponding modification is described in [86, 87, 89].

MEIS construction on the basis of the first procedure involves essential diffi-
culties. Indeed, one of the difficulties is that the main variants of the model of
extreme intermediate states ((2.38)—(2.42), (2.43)—(2.50)) assume knowledge of a
list of variables rather than the mechanism of the overall process. Since, in general,
motion equations that limit the thermodynamic attainability region include only
some of the sought variables, there is a need to formulate an expression for the
characteristic function depending variously on different groups of arguments.

The second procedure, one which entails the exclusion of t, is to directly apply
either the right-hand sides of motion equations orthe integrals of these equations
or linear approximations of them. This procedure is much simpler compared to
the first one. Currently, MEIS with rate constraints are applied on the basis of the
second procedure only.

For the physicochemical systems with the fixed T', P, and y a new modification
has the following form:

Find

max (F(x) => c,x,) = F (x) (S.1)

jeJext

subject to
Ax = b, (S.2)
D;(y) ={x:x <y}, (5.3
px) <, (S4)
G =Y G;)x;, (S.5)
J

xj > O, (S6)
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where W is a given limiting value of the expression for a process that decreases
Dy (y).

The presence of inequality (S.4) restricting the values of expressions for the
limiting processes distinguishes the model (S.1)—(S.6) from model (2.38)—(2.42).
In some respects the model (S.1)—(S.6) has some advantages over the models of
nonequilibrium thermodynamics and over the thermodynamic transformations of
the motion equations. Transition from the analysis of trajectories to the analysis
of states substantially reduces the amount of necessary initial information. Thus,
in a general case, it is unnecessary to know the whole mechanism of the studied
process, i.e., its elementary or formally simple stages. There is a need only for
the initial information on limiting motion equations. Besides, the applied mathe-
matical technique is appreciably simplified. Differential equations are substituted
by algebraic and transcendent ones. In this case it appears possible to describe
by the finite values spatially inhomogeneous systems, ones in which the intensive
parameters experience changes in some directions (see Section 2.3). Formulation
of the problem in terms of mathematical programming allows the applied model
to be supplemented with diverse equality and inequality constraints to take into
account specific features of the considered phenomenon (see Section 2.2).

Examples of Equilibrium Description Application

The efficiency of MEIS-type model with descriptions of motion will be illustrated
on examples of inclusion of constraints on chemical reaction rates and analysis of
stationary and nonstationary flow distributions in hydraulic circuits.

At first we will deal with construction and application of MEIS modifications
(S.1)—(S.6) on the simplest example of isomerization reaction for the system with
three components, x;, x» and x3, that was described in Section 2.2. The process
mechanism consists of the stages

Xy —> x, and xy — X3

and the constraints on rate of the second of them, T', P, and the vector y = (1, 0, O)T
are given.

If the maximum attainable x5 is determined, model (S.1)—(S.6) for this example
takes the following form:

Find
max x3 (8.7)
subject to
x1+x+x3=1, (S.8)
D, (y)={x:x =y}, (8.9)
kaxy < W, (S.10)
G(x)= ; Gj(x)xj, (S.11)

Xj > 0. (8.12)
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kyx=Y

G = const

FIGURE S.2. Graphical interpretation of isomerization process.

Fig. S.2 presents graphically the effect of the constraint on the rate of the second
stage (S.10). The thermodynamically unattainable zones from y subject to (S.9) are
indicated by the hatched area of the triangle (the material balance polyhedron) and
the following points are plotted: x°, the maximum x3 without constraint (S.10),
¥ and the largest attainable x3 with a complete system of constraints (S.8)—(S.12),
X The straight line kpx, < W that is the kinetic constraint (S.10) divides l§,(y)
(the non-hatched part of the triangle) into two parts, the left of which turns out to
be inaccessible. Owing to this constraint, solution to problem (S.7)—(S.12) shifts
from ¥°*' to the point x**' (the intersection of the straight line krx, = W with the
boundary of the inaccessibility zone near the vertex As). The point x**' is located
on the line of the constant x3 that is more distant from the vertex A3 (the point
of maximum x3 on the triangle A;A;Aj3) than £ is. Hence, x**' < ¥, Fig. S.2
also shows that with introduction of condition (S.10) the attainability region D,(y)
from the vertex A; is considerably reduced (the part ﬁ,(y) of D,(y) that is sit-
uated to the right of the straight line k»x, = W is much smaller than D,(y) as a
whole).

The value of the constant W in this case can be determined from the
conditions

o kl
Tk —ky

X2 (e’k‘r — e’k”) and T <71’
(see Section 2.2).

In the second example, described in detail in [87, 88, 89] the maximum possible
formation of thermal nitrogen oxide (formed from nitrogen and atmospheric oxy-
gen) at burning of natural or synthetic gas is determined. To derive the inequality
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(S8.10) the following reactions are considered:

0+N, - N+NO (S.13)
N+ 0, - 04+ NO (S.14)
N +OH — H+NO (S.15)

Reaction (S.13) is limiting and the NO formation rate by this reaction is determined
by the equation

dxno
dt

Besides, the following two assumptions were made. By the Zeldovich mecha-
nism [176] NO starts to form only after complete burning out of hydrocarbons and
the relation of the initial state for reaction (S.13)—(S.15) y* with the initial state of
the general combustion process y can be described by the transformation

= kXO)CNZ. (816)

T - T
y= (yCHu Y0, > yNz) —> Yy = (yCC)z’ YH,05 YO, yNz)

For simplicity, among the hydrocarbons only methane is indicated in the vector
y. The value of xy, is constant and equal to yy,. The maximum value of x; is
determined by model (S.1)—(S.3), (S.5), (S.6), with the given objective function
F(x) = x¢ and with given y*.

With the assumptions made, condition (S.10) takes the form

xNo < Kxf)’“. (8.17)

A linear form of the constraint on chemical kinetics that is obtained in this
example (as well as in the previous one) does not influence the possibility of
solving the problem by the convex programming (CP) method. When condition
(S.10) cannot be written in a linear form, this possibility must be studied further.

Fig. S.3 illustrates the results obtained under the indicated assumptions. It
presents a two-dimensional section of the polyhedron of material balance (S.2),
(S.6) constructed by three fixed points y*, x§ and x3*. The lines of the constant
Gibbs energy levels are drawn inside the section. Without (S.17) the thermody-
namically attainable region is limited by the line y*aby* (that is not hatched). The
segment ab of this line represents an energy level whose point of contact is a with
the section edge y*x3™. The tangent drawn to this line in parallel with the edge
y*x3* determines the value X5&"'—the maximum thermodynamically attainable
content of NO in the system, if the Zeldovich mechanism is observed. This value,
as is seen from the figure, considerably exceeds xyy, at the minimum point G (x) of
the system. Neglecting the Zeldovich mechanism, the thermodynamic attainability
region will be limited by the line ycdy (the points corresponding to the vectors y*
and y coincide in the figure).

The condition xyo = K x¢o in Fig. S.3 is represented by the straight line y“e.
Passage of this line through the vertex y~ is caused by the equalities xxo = xo = 0.
Inequality (S.17) results in an additional region of thermodynamic inattainability,
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mat N
No

FIGURE S.3. Graphical interpretation of the nitrogen oxide formation.

which is depicted by shading. The extreme concentration of NO therewith, essen-
z.ext

tially falls, and the solution shifts to the point x5&". D; (y*) becomes substantially
narrow and is limited by the line y*ax%&"y*. If in the considered example the co-
efficient K is decreased (e.g., due to change in the residence time for the reacting
mixture in the combustion chamber or change in the combustion temperature),
the line limiting D, (y*) will shift to the right (y“e’) and the maximum possible
quantity of NO will go down (xl’\?oe’“).

Thus, when we applied the MEIS variant (2.38)—(2.42) to the combustion anal-
ysis, the chemical kinetics were taken into account by the special kinetic model
(see Section 5.2). Model (S.1)—(S.6), as is seen from the presented example, eval-
uates the reaction mechanism and factors affecting its rate based on the single
thermodynamic description. Additionally, the choice of the objective function
of MEIS in the presented examples (as in many other examples given in the
body of the book) can be interpreted as a choice of the “subjective” criterion of
order (self-organization) in the reacting system. As is known, formalization of such
a criterion in the problems of non-equilibrium thermodynamics and synergetics
often involves great difficulties. MEIS makes it possible to choose this criterion
in accordance with the study’s goals. In the two described examples, the ordered
system states are naturally the states with the least amount of harmful (needless)
products. Maximization of xno in the second example results in determination of
the maximum possible degree of disorder.

In further examples, the flow distribution in multiloop hydraulic networks is
taken as an object of modeling. In the example of hydrodynamics, the illustration
of MEIS’s capabilities for analyzing nonequilibrium systems is vivid. Here we will
explain in terms of equilibria the irreversible processes of energy dissipation that



Supplement 263

are associated with viscosity and thermal conduction. In the examples we discuss,
this problem is solved more easily owing to the assumption on the one-dimensional
flows, as systems with such flows are potential systems (see Sections 1.25 and 3.3).

First we will make some comments on the examples in Sections 3.3 and 3.4. We
consider the derivation of the model of an open passive circuit with the Lagrange
function

p —1
L = nZIZ,'XIﬁJrl —WZ)\j (ZC”,‘X,’)
i=1 j=1

i€l

from the model of the closed active circuit (3.33)—(3.36). This derivation can be
considered a special case of Prigogine’s theorem for non-equilibrium processes,
which was mentioned above.

The results of calculating the circuit diagram in Fig. 3.4 (see Table 3.2,
variant 3) show the possibility of determining from the condition of isolated system
equilibrium (max S) the order levels in open subsystems it comprises (the turbu-
lent flow in branches 1-15 and the laminar flow in branch 16). In fact, the type
of closing relations in this case was given in advance. However, optimization of
these relations using the second law for circuits with lumped parameters involves
only mathematical difficulties.

In Section 3.4 derivations of closing relations for nonideal multiphase and multi-
component liquids were illustrated by techniques of constructing one-dimensional
potential models of irreversible flow of a viscous fluid. The sketch of equilibrium
descriptions of fire spreading in systems of air exchange in buildings as presented
in this section surely belong to modeling of irreversible processes.

Nonstationary flow distribution in a hydraulic network will be the last example
[89, 93]. The Navier—Stokes equation determining the equilibrium of forces affect-
ing liquid flow limits the region of attainable states in this example. For turbulent
flow of an incompressible liquid this equation takes the following form, taking
into account forces of pressure, friction, and inertia only:

dP_)prz_’_ dw
e~ "2a TPar

As aresult of elementary transformations we pass from (S.18) to the expression

(S.18)

2 2
Z_: — %Pbr _ ﬁxz — yberr _ yerZ (819)
where x is the volumetric flow rate; P is the specific pressure loss in the branch;
y" and y™ are coefficients.

Some comments are required before we present MEIS of non-stationary flow
distribution by using equation (S.19). Time-independence of the right-hand side
of equation (S.19) can be interpreted as follows. At any section of hydraulic net-
work branch and at any time all flow characteristics, in particular, thermodynamic
functions (enthalpy, entropy, and others) fully depend on the current state and do
not depend explicitly on 7. If the flows are isothermal (1 / T is constant), study of
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the entropy behavior can be substituted by study of enthalpy behavior. Variation
in the enthalpy of the network branches at p = const and w = const is reduced to
variation in the potential energy (pressure).

Under the assumptions made and the made choice of extreme pressure at the
given node of the scheme as the objective function MEIS for the closed network
(without sources and sinks) takes the form:

Find
ext (P, = eP, + P — P™) (5.20)
subject to
Axk — O’ (821)
i | Phr| ( brpork _ y'frxlﬁ) > 0. (5.22)
i=1
Z Pmov |Xk| Z \Pibr.kxﬂg’. =0, (5.23)
i=1 i=l1
P =eP, — A" (P — PM™) (S.24)

where P is the vector of pressure at the nodes; P, is the fixed pressure at node
J = m; P™ is the effective head in the ith branch; P;’r and P;‘"" are the vectors
of pressure drop and the effective pressure in the branches of the “circuit tree” ¢
that includes the paths from nodes j = 1, ..., m — 1 to node m (see Section 3.3,
model (3.45)—(3.48)); A, is the matrix of “paths” that corresponds to the circuit
tree g; k is an index of iteration of the computational process; and r is an index of
the node, at which the extreme pressure is sought.

Equation (S.21) represents the material balance of a closed network. Inequality
(S.22) accounts for the condition of monotone nondecrease of entropy. Note that the
expression in parentheses on the left-hand side of (S.22) is the right-hand side of the
Navier—Stokes equation, i.e., it is the time—derivative of the flow. Equality (S.23)
is the energy balance of the network for each equilibrium state considered in the
iterative calculation. Equation (S.24) is applied to calculate nodal pressures that are
also sought variables along with flows in the branches. The use of absolute values
of variables in (S.22) and (S.23) is explained by the fact that energy dissipation
does not depend on the direction of flows.

Physically, the accepted problem statement may (for example) consist of deter-
mining maximum pressure rise at fast flow closure in any branch or its maximum
drop at pipe break. Of course, other statements on the problem of searching for
partial equilibria in multiloop hydraulic systems—problems that involve analysis
of normal or emergency nonstationary flow distribution—are also possible.

The form of model (S.20)—(S.24) shows that it is written for conditions where
“fast” disturbances proceed so slowly that frictional forces have time to reveal
themselves, i.e., the liquid does not become ideal. Basic difficulties emerge when
describing “instantaneous” disturbances leading to wave processes and, in some
cases, to hydraulic shocks. The authors have taken only the first steps in the analysis
of the presented problem; however, these steps offer hope for its successful solution.
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Derivation of the hydraulic shock equation from the Lagrange equilibrium equation
as one of the steps to the solution is described in Section 1.3.

Conclusion

We reveal the capabilities of descriptions of equilibrium, not to oppose currently
recognized scientific direction (such as nonequilibrium thermodynamics and syn-
ergetics [67, 143]), but to display the expediency of supplementing new approaches
by old, “good” models of equilibria.

Nonequilibrium thermodynamics and synergetics involve undeniable progress
in: the explanation of many of the phenomena in transfer processes; the develop-
ment of the theories of self-organization; and the ordering in physical, chemical,
biological, and social systems. Introduction of the methods of classical thermody-
namics into these areas is advisable primarily for solving large-dimensional applied
problems. Note that it was precisely the equilibrium thermodynamic models that
were used in the first half of the 20th century to create numerous computational
systems for computational studies in energy, metallurgy, astronautics, geology,
ecology, and other spheres of science and technology. MEIS offers advantages
over the traditional models of equilibrium thermodynamics in terms of its capabil-
ities to account for constraints on kinetics and transfer processes, i.e., to estimate
feasibility of equilibria sought.

Currently, we can construct computational MEIS-based algorithms for specific
problems using the sufficiently detailed analysis of MEIS’s mathematical proper-
ties and its reducibility to the convex programming problem. We have implemented
the basic units of a commercial computational software, one that is available to
users and that can easily be supplemented with the auxiliary units.

However, to make the equilibrium models of nonequilibrium systems acces-
sible to a wide circle of researchers and engineers, we need to “detailize” the
models to fit the basic processes of matter, energy, impulse, and charge transfer.
For the time being, models of extreme intermediate states have been worked out
in certain detail only in descriptions of chemical kinetics and one-dimensional
hydrodynamics (for multiloop systems though). Strict thermodynamic descrip-
tion of different “motions,” in turn, requires that mathematical interrelations be-
tween equilibrium models of mechanics and thermodynamics, and between the
formalisms of equilibrium and nonequilibrium thermodynamics, be elucidated.
The authors are currently investigating this problem.



References

10.

11.

12.

13.

266

. Aerosol and Climate/ Edited by K.Ya. Kondratiev. Leningrad: Gidrometeoizdat, 1991.

541 p. (in Russian)

. Afanasieva-Ehrenfest T.A. Irreversibility, homogeneity and second principle of ther-

modynamics. J. Appl. Phys.—1928; Vol. 5, 3—4: P.3-30. (in Russian)

. Altshul A.D. Hydraulics and Aerodynamics. Moscow: Stroyizdat, 1975. 323 p. (in

Russian)

. Antsiferov E.G. Application of mathematical programming methods to the analysis of

thermodynamic systems: Abstract of doctoral thesis. Moscow, 1991. 30 p. (in Russian)

. Antsiferov E.G., Ashchepkov L.T. and Bulatov V.P. Optimization methods and their

applications. Part 1. Mathematical Programming. Novosibirsk: Nauka, 1990. 158 p.
(in Russian)

. Antsiferov E.G. and Bulatov V.P. Simplex embedding method in convex programming.

J. Calculus Math. Math Phys. 1987; Vol. 27 (No. 3): P.377-384. (in Russian)

. Antsiferov E.G., Kaganovich B.M. and Semeney P.T. Search for intermediate ther-

modynamic states of physicochemical systems. In: Numerical Methods of Anal-
ysis and their Applications. Irkutsk: Siberian Energy Institute, 1987. P.150-170.
(in Russian)

. Antsiferov E.G., Kaganovich B.M. and Yablonsky G.S. Thermodynamic limitations

in searching for regions of optimal performance of complex chemical reactions (ex-
amplified by conversion of hydrocarbons). React. Kinet. Catal. Lett. 1988; Vol. 37
(No. 1): P.57-61.

. Sinyarev G.B., Vatolin M.A., Trusov B.G. and. Moiseev G.K. Application of Com-

puters to Thermodynamic Calculation of Metallurgical processes. Moscow: Nauka,
1982. 263 p. (in Russian)

Arnold V.I. On representation of functions of multiple variables as the superposition
of functions of lesser number of variables. In: Mathematical Enlightenment. Edition
3. Moscow: Gos. fiz.-mat. Li, 1958. P.41-61. (in Russian)

Asaturov M.L., Budyko M.I. and Vinnikov K.Ya. Volcanoes, Stratosphere Aerosol
and Planet Climate. — Leningrad: Gidrometeoizdat, 1986. 255 p. (in Russian)
Atkinson R. and Arey J. Atmospheric chemistry of gas-phase polycyclic aromatic
hydrocarbons: Formation of atmospheric mutagens.Environ. Health Perspect. Suppl.
1994; Vol. 102 (Suppl 4): P.117-126.

Atkinson R., Baulch D.L. and Cox R.A. Evaluated kinetic and photochemical data for
atmospheric chemistry. J. Phys. Chem. Ref. Data. 1989; Vol. 18 (No. 2): P.8§81-1097.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

References 267

. Atmosphere Protection from Industrial Pollution: Reference-book, edited by S. Calvert

and G.B. Inglund.—Moscow: Metallurgiya, 1988; Vol. 1: 760 p; Vol. 2: 712 p. (in
Russian)

. Atmosphere: Reference-book (reference data, models). Leningrad: Gidrometeoizdat,

1991. 509 p. (in Russian)

Balyshev O.A. Nonstationary models in hydraulic circuits theory: Abstract of doctoral
thesis. Irkutsk, 1998. 48 p. (in Russian)

Balyshev O.A., Kaganovich B.M. and Merenkov A.P. Pipeline systems of heat and
water supply as dynamic models of hydraulic circuits. Izv. AN. Energetika. 1996;
(No. 2): P.96-104. (in Russian)

Balyshev O.A. and Tairov E.A. The Analysis of Transient and Stationary Processes in
Pipeline Systems (Theoretical and Experimental Aspects). Novosibirsk: Nauka, 1998.
164 p. (in Russian)

Bazaraa M.S., Sherali H.D. and Shetty C.M. Nonlinear Programming: Theory and
Algorithms. New-York: John Willey & Sons, Inc. 1993.

Bazarov I.P. Thermodynamics. Moscow: Vysshaya shkola, 1991. 376 p. (in Russian)
Boltzmann L. Uber die Beziehung zwishen dem zweiten Hauptsatze der mechanischen
Wiirmetheorie und der Wahrscheinlichkeitsrechnung respective den Sitzen iiber das
Wirmegleichgewicht. Wien. Akad. Sitzungsber. 1878; Bd. 76: S.373-435.

Boreskov G.K. Catalysis: Questions of Theory and Practice. Novosibirsk: Nauka,
1987. 536 p. (in Russian)

Born M. Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik.
Physic, Zschr. 1920; 22: 218-224, 249-254, 282-286.

Bowen R.M. Thermochemistry of reacting materials. J. Chem. Phys. 1968; Vol. 49
(4): P.1625-1637.

Brimblecombe P. Air Composition and Chemistry. Cambridg: Cambridge University
Press, 1986.

Bugaenko L.T., Kuzmin M.G. and Polak L.S. High Energy Chemistry. N.Y.-Toronto-
Sydney-Tokyo-Singapore: Ellis Horwood and Prentice Hall, 1993. 403 p.
Caratheodory C. Untersuchungen iiber die Grundlagen der Thermodynamik. Math.
Ann. 1909; 61: S.355-390.

Chemical Applications of Topology and Graph Theory, edited by R.B. King.
Amsterdam-Oxford-New York-Tokyo: Elsevier, 1983. 560 p.

Coleman B.D. and Gurtin M.E. Thermodynamics with internal state variables.J. Chem.
Phys. 1967; Vol. 47: P.597-613.

Combustion chemistry, edited by W.G. Gardiner. New York: Springer-Verlag, 1984.
464 p.

Conrad R. Flux of NO, between soil and atmosphere: Importance of microbial
metabolism. In: Denitrification in Soil and Sediment, edited by N.P. Revsbech and J.
Sorensen. New York: Plenum Press, 1990. P.105-128.

Dantzig G., Johnson S. and White W. A linear programming approach to the chemical
equilibrium problem.Manag. Sci. 1958; Vol. 5 (No. 1): P.38-43.

Dantzig G.B. Linear Programming and Extensions. Princeton: Princeton University
Press, 1963. 460 p.

Dikin LI. Iterative solution of linear and quadratic programming problems. Papers of
AS USSR. 1967; Vol. 174 (No. 4): P.747-748. (in Russian)

Dikin LI. and Zorkaltsev V.I. Iterative Solution of Linear Mathematical Programming
Problems. Novosibirsk: Nauka, 1986. 144 p. (in Russian)



268

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47,

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.
59.

References

Dovgaluk U.A. and Ivlev L.S. Physics of Aqueous and Other Atmospheric Aerosols.
S.-Petersburg: S.-Petersburg University, 1998. (in Russian)

Ehrenfest P. Collected Scientific Papers. North-Holland, Amsterdam: 1959. P.213—
300.

Einstein A. Beitriige zur Quantentheorie. Dtsch. Phys. Ges. 1914; 16: S.820-828.
Einstein A. Deduction thermodynamique de la loi de 1’equivalence photochemique.
J. Phys. Ser. 5, 1913; 111: S.277-282.

Einstein A. Uber die von der molekularkinetischen Theorie der Wirme geforderte
Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys. 1905;
17: S.549-560.

Einstein A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906; 19: S.371-381.
Einstein A. Elementare Theorie der Brownschen Bewegung. Zs. Ekrochem. 1908; 4:
S.235-239.

Einstein A. Theorie der Opaleszenz von homogenen Fliissigkeiten und
Fliissigkeitsgemischen in der Nihe des krittischen Zustandes. Ann. Phys. 1910; 33:
S.1275-1298.

Feinberg M. On chemical kinetics of a certain class. Arch. Rat. Mech. Anal. 1972; Vol.
46 (No. 1): P.1-41.

Feinberg M. Recent results in optimal reactor synthesis region theory.Chem. Eng. Sci.
1999; Vol. 54 (No. 7): P.2535-2544.

Feinberg M. and Hildebrant D. Optimal reactor design from a geometric viewpoint—
1. Universal properties of the attainable region. Chem. Eng. Sci. 1997; Vol. 52 (No.
10): P.1637-1665.

Feinberg M. and Horn F. Dynamics of open chemical systems and the algebraic
structure of the underlying reaction network.Chem. Eng. Sci. 1974; Vol. 29: P.775—
787.

Fenimore C.P. Formation of nitric oxide from fuel nitrogen in ethylene flames. Com-
bust. Flames. 1972; Vol. 19 (No. 2): P.289-296.

Feynman R.P., Leighton R.B. and Sands M. The Feynman Lectures on Physics.
Massachusetts-Palo Alto-London: Addison-Wesley, Inc., 1963.

Filippov S.P., Kaganovich B.M. and Pavlov P.P. Thermodynamic modeling of nitrogen
oxides formation during coal combustion./nt. J. Energ. Environ. Econ. 1997; Vol. 6
(No. 1): P.47-66.

Fourier I.B.J. Theorie Analytique de la chaleur. Paris: 1822. 673 p.

Gantmacher FR. The Theory of Matrices. American Mathematical Society, 1959.
ISBN: 0821826646.

Gerasimov Ya.l. and Geidrich V.A. Thermodynamics of Solutions. Moscow: Moscow
State University, 1980. 184 p. (in Russian)

Gibbs J.W. On the equilibrium of heterogeneous substances. Trans. Connect. Acad.
1876; 3: P.108-248. 1878; 3: P.343-524.

Gibbs J.W. Statistical Mechanics. Ibid. P.350-508.

Glansdorff P. and Prigogine I. Thermodynamics of Structure, Stability and Fluctua-
tions. New York: Wiley. 1971. 280 p.

Glasser D., Hildebrant D. and Godorr S. The attainable region for segregated, maxi-
mum mixing, and other reactor models./nd. Eng. Res. 1994; Vol. 33 (No. 5): P.1136—
1144.

Gorban A.N. Equilibrium encircling. Novosibirsk: Nauka, 1984. 226 p. (in Russian)
Gorban A.N. Methods for qualitative study of chemical kinetics equations. Chislennye
Metody Mekhaniki Sploshnoi Sredy. 1979; Vol. 10 (No. 4): P.42-59.



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

References 269

Gorban A.N., Bykov V.I. and Yablonsky G.S. Sketches on Chemical Relaxation.
Novosibirsk: Nauka, 1986. 236 p. (in Russian)

Gorban A.N. and Karlin I.V. Invariant manifolds for physical and chemical kinetics.
Lecture Notes in Physics. Berlin-Heidelberg: Springer, Vol. 660. 2005.

Gorban A.N., Karlin I.V. and Zinovyev A.Ju. Constructive methods of invariant
manifolds for kinetic problems. Phys. Reports 396, 4-6: 2004. P. 197—403. Preprint
online.

Gorban A.N., Karlin I.V,, Ottinger H.C. and Tatarinova J.J. Ehrenfest’s argument
extended to a formalism of nonequilibrium thermodynamics. Phys. Rev. E. 2001; Vol.
63: P.1-6.

Gorban A.N., Yablonskii G.S. and Bykov V.I. The path to equilibrium./nt. Chem.
Engn. 1982; Vol. 22 (No. 2): P.368-375.

Gradstein I.S. and Ryzhik .M. Tables of Integrals, Sums, Series and Products.
Moscow: Gos. fiz.-mat. izdat., 1962. 1100 p. (in Russian)

Grishin A.M. Mathematical Modeling of Forest Fires and New Methods of Their
Extinguishing. Novosibirsk: Nauka, 1992. 408 p. (in Russian)

Haken H. Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems
and Devices. Berlin-Heidelberg-New- York-Tokyo: Springer-Verlag, 1983.
Handbook of Air Pollution Technology, edited by S. Calvert and H.M. Englund. New-
York: John Wiley & Sons, Inc., 1984. 850 p.

Hilbert D. Gesammelte Abhandlungen. B. 3, 1935. S.290-329.

Hildebrant D. and Glasser D. Predicting phase and chemical equilibrium using the
convex hull of the Gibbs energy. Chem. Eng. J. (Lausanne). 1994; Vol. 54 (No. 3):
P.187 -197.

Horn F. and Jackson R. General mass action kinetics. Arch. Rat. Mech. Anal. 1972;
Vol.47 (No. 2): P.81-116.

Horn R.A. and Johnson C.R. Matrix Analysis. Cambridge [Cambridgeshire]-New
York: Cambridge University Press, 1985.

Izmailov N.A. Electrochemistry of solutions. Moscow: Himiya, 1976. 130 p. (in Rus-
sian)

Juda-Rezler K. Classification and characteristics of air pollution models. In: Chemistry
for the Protection of the Environment, edited by L. Pawlowski et al. New York: 1991.
P51-72.

Kaganovich B.M., Merenkov A.P. and Sumarokov S.V. Physico-mathematical Aspects
in Developing Hydraulic Circuits Theory. Irkutsk: Siberian Energy Institute, 1993.
37 p. (in Russian)

Kaganovich B.M. Discrete Optimization of Heat Supply Systems. Novosibirsk:
Nauka, 1978. 88 p. (in Russian)

Kaganovich B.M. Extremality criteria in hydraulic circuits theory. Preprint No. 15.
Irkutsk: Energy Systems Institute, 1997. 22 p. (in Russian)

Kaganovich B.M. Thermodynamic interpretations of extreme models of flow distri-
bution in hydraulic circuits. Izv. AN. Energetika. 2000; No. 2: P.77-83. (in Russian)
Kaganovich B.M. Thermodynamics of Circuits. Irkutsk: Siberian Energy Institute,
1991. 35 p. (in Russian)

Kaganovich B.M. and Filippov S.P. Development of equilibrium thermodynamic mod-
els for studying technical and environmental problems in energy. Int. J. Global Energy
Issues. 2003; Vol. 20 (No. 4): P.326-339.

Kaganovich B.M. and Filippov S.P. Equilibrium Thermodynamics and Mathematical
Programming. Novosibirsk: Nauka, 1995. 236 p. (in Russian)



270

82

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

References

. Kaganovich B.M., Filippov S.P. and Antsiferov E.G. Efficiency of Energy Tech-
nologies: Thermodynamics, Economics, Forecasts. Novosibirsk: Nauka, 1989. 256 p.
(in Russian)

Kaganovich B.M., Filippov S.P. and Antsiferov E.G. Modeling of Thermodynamic
Processes. Novosibirsk: Nauka, 1993. 101 p. (in Russian)

Kaganovich B.M., Filippov S.P. and Antsiferov E.G. Studies of the environmental
pollution using thermodynamic models. Int. J. Energ., Environ., Econ. 1992; Vol. 2
(No. 1): P.7-13.

Kaganovich B.M., Filippov S.P. and Pavlov P.P. Thermodynamic Modeling on Graphs.
Irkutsk: Energy Systems Institute, 1998. Preprint No. 6. 30 p. (in Russian)
Kaganovich B.M., Filippov S.P., Shamansky V.A. and Shirkalin I.A. On the feasibility
of equilibria in processes of substance and energy conversion. Izv. AN. Energetika.
2004; No. 5: P.123-131. (in Russian)

Kaganovich B.M., Keiko A.V., Shamansky V.A. and Shirkalin I.A. Analysis of Fea-
sibility of Thermodynamic Equilibria in Physicotechnical systems. Irkutsk: Energy
Systems Institute, 2004. Preprint No. 10. 61 p. (in Russian)

Kaganovich B.M., Keiko A.V., Shamansky V.A. and Shirkalin I.A. Description of
non-equilibrium processes in energy problems by the equilibrium thermodynamics
methods. Izv. AN. Energetika. 2006. No. 3. (in Russian)

Kaganovich B.M., Keiko A.V., Shamansky V.A. and Shirkalin I.A. On the area of
equilibrium thermodynamics application. Proc. ASME 2004 Int. Mech. Eng. Congr.
Nov. 13-19, 2004, Anaheim, California-USA.

Kaganovich B.M., Kuchmenko E.V., Shamansky V.A. and Shirkalin I.A. Thermody-
namic modeling of phase transitions in multicomponent systems. Izv. AN. Energetika.
2005; No. 2: P.114-121. (in Russian)

Kaganovich B.M., Merenkov A.P. and Balyshev O.A. Elements of Heterogeneous
Hydraulic Circuits Theory. Novosibirsk: Nauka, 1997. 120 p. (in Russian)
Kaganovich B.M., Merenkov A.P., Sumarokov S.V. and Shirkalin I.A. Flow distribu-
tion in networks and extreme principles of mechanics and thermodynamics. Izv. AN.
Energetika. 1995; No. 5: P.107-115. (in Russian)

Kaganovich B.M., Shamansky V.A. and Shirkalin I.A. Analysis of feasibility of equi-
libria in multicomponent and multiphase media. Proceedings of N.I. Lobachevsky
Mathematical Center. V. 27. Kazan Mathematical Society. Models of continuum me-
chanics. Materials of XVII Session of the International school on the models of con-
tinuum mechanics. Kazan: Izd. Kazan Math. Soc. 2004. P.136-143. (in Russian)
Karmanov V.G. Mathematical Programming. Moscow: Nauka, 1986. 288 p. (in Rus-
sian)

Karpenko E.I. and Messerle V.E. Introduction into Plasma-Energy Technologies of
using Solid Fuels. Novosibirsk: Nauka, 1997. 118 p. (in Russian)

Karpov I.K. Physico-chemical Modeling in Geochemistry on Computers. Novosibirsk:
Nauka, 1981. 247 p. (in Russian)

Karpov LK., Kiselev A.I. and Letnikov F.A. Modeling of Natural Minerals Formation
on Computers. Moscow: Nedra, 1976. 256 p. (in Russian)

Keck J.C. Rate controlled constrained equilibrium. Prog. Energ. Combust. Sci. 1990.
Vol. 16: P.125-154.

Keiko A.V. Software for Kinetic Analysis of Thermodynamic Processes. Irkutsk:
Siberian Energy Institute, 1996. Preprint No. 5. 46 p. (in Russian)

Keiko A.V., Filippov S.P. and Kaganovich B.M. Chemical safety of atmosphere and
energy. Irkutsk: Siberian Energy Institute, 1995. Preprint No. 6. 35 p. (in Russian)



101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

References 271

Keiko A.V., Filippov S.P. and Kaganovich B.M. Thermodynamic analysis of secondary
pollution of the atmosphere.Int. J. Energy, Environ. Econ. 1997; Vol. 4 (No. 4): P.247—
260.

Keiko A.V., Shirkalin I.A. and Filippov S.P. Calculation Tools for Thermodynamic
Analysis. Irkutsk: Energy Systems Institute, 1999. Preprint No. 4. 47 p. (in Russian)
Keiko A.V., Shirkalin I.A. and Svishchov D.A. Prospective modes of low-grade solid
fuels processing. Izv. AN. Energetika. 2006; No. 3. (in Russian)

Khasilev V.Ya. Elements of the hydraulic circuits theory. Izv. AN SSSR. Energetika i
transport. 1964; No. 1: P.69-88. (in Russian)

Khasilev V.Ya. Elements of the Hydraulic Circuits Theory: Abstract of Doctoral thesis.
Novosibirsk, 1966. 98 p. (in Russian)

Khasilev V.Ya. Generalized relationships for technical and economic calcula-
tions of heat supply and other networks.Teploenergetika. 1957; No. 1: P.28-32
(in Russian).

Khasilev V.Ya. On the application of mathematical methods for designing and opera-
tion of pipeline systems. Izv. AN SSSR. Energetika i transport. 1971; No. 2: P.18-27.
(in Russian)

Kirchhoff G.R. Ueber die Anwendbarkeit der Formeln fiir die Intensititen der gal-
vanischen Strome in einem Systeme linearer Leiter auf Systeme, die zum Teil aus
nicht linearen Leitern bestehen, Ges. Abhandl., Leipzig, Johann Ambrosius Barth,
1848. S.33-49.

Kirchhoff G.R. Ueber die Bewegung der Elektrizitit in Drihten. Ges. Abhandl.
Leipzig: Johann Ambrosius Barth, 1882. S.131-154.

Kirchhoff G.R. Ueber eine Ableitung der Ohm’schen Gesetze, welche sich an die The-
orie der Elektrostatik anschliesst. Ges. Abhandl. Leipzig: Johann Ambrosius Barth,
1882. S.49-55.

Kirhchhoff G.R. Ueber den Durchgang eines elektrischen Stromes durch eine Ebene,
insbesondere durch eine kreisformige. Ann. Phys. 1845; Bd. 64: S.497-514.
Kirhchhoff G.R. Ueber die Auflésung der Gleichungen, auf welche man bei der Unter-
suchung der linearen Verteilung galvanischen Strome gefiihrt wird. Ann. Phys. 1847,
Bd. 71: S.498-508.

Kirillin V.A., Sheindlin A.E. and Spilrain E.E. Thermodynamics of Solutions.
Moscow: Energiya, 1980. 287 p. (in Russian)

Kirillin V.A., Sychev V.V. and Sheindlin A.E. Technical Thermodynamics. Moscow:
Nauka, 1979. 490 p. (in Russian)

Krichevsky I.R. Notions and Fundamentals of Thermodynamics. Moscow: Himiya,
1970. 439 p. (in Russian)

Kronrod A.S. On the functions of two variables. Moscow-Leningrad: Gos. izd. teh.-
teor. lit. 1950; V. 5: issue 1(35). P.24—134. (in Russian)

Kubo R. Thermodynamics. Amsterdam: North-Holland Publishing Company, 1968.
Lagrange J. Mechanique Analytique. Paris: la Veuve Desaint, 1788.

Laktionov L.G. Equilibrium heterogeneous condensation. Leningrad: Gidrometeoiz-
dat, 1988. 160 p. (in Russian)

Landau L.D. The theory of superfluidity of helium II. Zh. Ecsp. Teor. Fiz. 1941; Vol.11:
592 p.

Landau L.D. Theory of monomolecular reactions. Phys. Z. Sowjetunion. 1936; Vol.
10: 67 p.

Landau L.D.and Lifshitz E.M. Theoretical Physics. Electrodynamics of Continuous
Media. Oxford: Pergamon Press, 1960.



272

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.
140.

141.

142.
143.

144.

145.

References

Landau L.D. and Lifshitz E.M. Theoretical Physics. Fluid Mechanics. Oxford: Perg-
amon Press, 1959.

Landau L.D. and Lifshitz E.M. Theoretical Physics. Mechanics. Oxford: Pergamon
Press, 1960.

Landau L.D. and Lifshitz E.M. Theoretical Physics. Statistical Physics. London: Perg-
amon Press, 1959.

Landau L.D. and Lifshitz E.M. Theoretical Physics. Theory of Elasticity. Oxford:
Pergamon Press, 1959.

Lifshitz E.M. and Pitievsky L.P. Theoretical Physics. Physical Kinetics. Moscow:
Nauka, 1979; Vol. 10: 527 p. (in Russian)

Logan J.A. Nitrogen oxides in the troposphere: Global and regional budgets.J. Geo-
phys. Res. 1983; Vol. 88: P.10785-10807.

Maxwell J.C. A Treatise on Electricity and Magnetism, edited by W.D. Niven, London:
The Clarendon Press, 1891.

Merenkov A.P. and Khasilev V.Ya. Theory of Hydraulic Circuits. Moscow: Nauka,
1985. 278 p. (in Russian)

Merenkov A.P., Sennova E.V. and Sumarokov S.V. Mathematical Modeling and Op-
timization of Heat-, Water-, Oil-, and Gas Supply Systems. et al. Novosibirsk: Nauka,
1992. 407 p. (in Russian)

Merenkov A.P., Khasilev V.Ya. and Kaganovich B.M. Methods and algoritms of cal-
culating heat supply networks. Moscow: Energiya, 1978. 176 p. (in Russian)
Morachevsky V.G., Golovina E.G. and Tsvetkova A.V. The role of atmospheric pollu-
tants in formation of urban fogs and low boundary of clouds. Parameterization of some
kinds of indeliberate and directed actions on the atmosphere. Leningrad: Leningrad
Hydrometeorological Institute, 1984. P.45-60. (in Russian)

Novitsky N.N. Evaluation of Hydraulic Circuit Parameters. Novosibirsk: Nauka, 1998.
213 p. (in Russian)

Novozhilov B.V. Chemical kinetics. Physical encyclopedia. Vol. 2. Moscow: Sovet-
skaya entsiklopediya, 1990. P.356-358. (in Russian)

Okunev A.G. and Parmon V.N. Application of the thermodynamic form of representing
kinetic equations to the analysis of reversible chemical processes. The functional of
stationary state. Kinet. Catal. 1997; Vol. 38 (No. 4): P.544-553. (in Russian)

Ots A.A., Egorov D.M. and Saar K.Yu. Study of nitrogen oxides formation from
nitrogen containing substances of fuel and the factors affecting this process. Teploen-
ergetika, 1982; No. 12: P.15-18. (in Russian)

Pavlov P.P. Ecological analysis of local heat supply systems. Abstract of candidate
thesis. Irkutsk, 1999. 23 p. (in Russian)

Planc M. Vorlesungen uber Thermodynamic. Berlin, 1954. 306 s.

Polak L.S. Ludwig Boltzmann, 1844-1906. Moscow: Nauka, 1987. 208 p.
(in Russian)

Polak L.S. Variational Principles of Mechanics. Moscow: Fizmatgiz, 1960. 599 p.
(in Russian)

Polyak B.T. Introduction into Optimization. Moscow: Nauka, 1983. 384 p. (in Russian)
Prigogine 1. Introduction to Thermodynamics of Irreversible Processes. New York:
John Wiley, 1967.

Reid R.C., Prausnitz J.M. and Sherwood T.K. Properties of Gases and Liquids:
McGraw-Hill, 1977.

Robinson R.A. and Stokes R.H. Electrolyte Solutions. London: Butterworths Scientific
Publications, 1959.



146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

References 273

Rockafellar R.T. Convex Analysis. Princeton, New Jersey: Princeton University Press,
1970. 470 p.

Roslyakov P.V. Calculation of fuel nitrogen oxides formation when burning nitrogen-
containing fuels. Teploenergetika. 1986; No. 1: P.37-41. (in Russian)

Rozonoer L.I. Thermodynamics of irreversible processes far from the equilibrium.
Thermodynamics and kinetics of biological processes. Moscow: Nauka, 1980. P.169—
186. (in Russian)

Scientific and technical grounds and experience in operation of plasma systems of coal
ignition in at thermal power plants (fuel oil-free kindling of boilers and stabilization
of burning of pulverized-coal flame). Karpenko E.I., Zhukov M.E,, Messerle V.E. et
al. Novosibirsk: Nauka, 1998. 137 p. (in Russian)

Selected values of physical and thermodynamic properties of hydrocarbons and related
compounds. Rossini FD., Pitzer K.-S., Arnet R.L. et al. Pittsburg: Amer. Petrol. Inst.,
1953. 1050 p.

Semenov N.N. Development of the Theories of Chain Reactions and Thermal Ignition.
Moscow: Znanie, 1969. 94 p. (in Russian)

Semenov N.N. To the theory of combustion process. In: Theory of Combustion and
Explosion. Moscow: Nauka, 1981. P.5-32. (in Russian)

Shamansky V.A. Thermodynamic Modeling of Slagging the Heating Surfaces of
Boiler Units. Preprint No. 2. Irkutsk: Energy Systms Institute, 2004. 70 p. (in Russian)
Shinnar R. Thermodynamic analysis in chemical process and reactor design.Chem.
Eng. Sci. 1988; No 8: P.203-2318.

Shinnar R. and Feng Ch.A. Structure of complex catalytic reactions. Thermodynamic
constraints in kinetic modeling and catalyst evaluation. Ind. Eng. Chem. Fund. 1985;
Vol. 24 (No. 2): P.153-170.

Shirkalin I.A. Solution of Convex Programming Problem with Great Dispersion of
Variable Values. Irkutsk: Siberian Energy Institute, 1997. 22 p. (in Russian)

Sigal I.Ya. Air Protection at Fuel Combustion. Leningrad: Nedra, 1988. 312 p. (in
Russian)

Sommerfeld A. Thermodynamics and Statistical Mechanics. New York: Academic,
1960.

Stepanov A.S., Zakharova [.N. and Novikova L.D. Modeling of pollutant accumulation
processes in fog drops. Meteorologiya i gidrologiya. 1997; No. 4: P.25-36. (in Russian)
Stull D.R., Westrum E.F. and Sinke G.C. The Chemical Thermodynamics of Organic
Compounds. New York-London-Sydney-Toronto: John Wiley & Sons, Inc., 1969.
Sumarokov S.V. Mathematical Modeling of Water Supply Systems. Novosibirsk:
Nauka, 1983. 167 p. (in Russian)

Thermodynamic Properties of Individual Substances. Gurvich L.V., Bergman G.A.,
Veits I.V. et al. edited by V.P. Glushko. Moscow: Nauka, 1978-1982; Vol. 1-4. (in
Russian)

Thompson A.M. Oxidants in the unpolluted marine atmosphere. In: Environmental
Oxidants, edited by J.O. Nriagu and M.S. Simmons. New York: John Wiley & Sons,
Inc. 1994; P.31-61.

Thompson A.M. The oxidizing capacity of the Earth’s atmosphere: Probable past and
future changes. Science. 1992; Vol. 256: P.1157-1165.

Titov S.P., Baby V.I. and Barabash V.I. Study of NO, formation from fuel nitrogen at
coal dust combustion. Teploenergetika. 1980; No. 3: P.64-67. (in Russian)
Tropospheric chemistry: A global perspective. Logan J.A., Prather M.J., Wotsy S.C.
and McElroy M.B. J. Geophys. Res. 1981; Vol. 86: P.7210-7254.



274

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

References

van-der-Waals I.D. and Constamm F. Course of Thermostatics. Pert. 1. General Ther-
mostatics. Moscow: ONTI, 1936. 438 p.; Part. 2. Binary Mixtures. Moscow: ONTI,
1936. 439 p. (in Russian)

Volpert A I Differential equations on graphs. Mathematical Collection. 1972; Vol. 88
(130): P.578-588. (in Russian)

Wahlen M. The global methane cycle. Ann. Rev. Earth Planet. Sci. 1993; Vol. 21:
P.407-426.

Walas S.M. Phase Equilibria in Chemical Engineering. Boston-London: Butterworth
Publishers, 1985.

Warnatz J., Maas U., Dibble R.W. Combustion. Phusical and Chemical Fundamentals,
Modelling and Simulations, Experiments, Pollutant Formation. Springer, 2001. 352 s.
White W.B., Johnson S.M. and Dantzig G.B. Chemical equilibrium in complex mix-
tures. J. Chem. Phys. 1958; No. 28: P.751-755.

Yablonsky G.S., Bykov V.I., Gorban A.N. and Elokhin V.I. Kinetic Models of Catalytic
Reactions. Amsterdam: Elsevier, 1991. 400 p.

Zeldovich Ja.B. Kinetics of chemical reactions. In: Theory of Combustion and Explo-
sion. Moscow: Nauka, 1981. P.150-184. (in Russian)

Zeldovich Ja. B. Theory of Gas Combustion and Explosion. Moscow: Nauka, 1981.
P.306-346. (in Russian)

Zeldovich Ja. B., Sadovnikov P.Ja. and Frank-Kamenetsky D.A. Nitrogen Oxidation
During Combustion. Moscow: Nauka, 1947. 146 p. (in Russian)

Zeldovich Ja.B. Proof of the unique solution to equations of the mass action law. J.
Phys. Chem. 1938; Vol. 11 (No. 5): P.658-687. (in Russian)

Zhukovsky N.E. On the Hydraulic Shock in Water Pipes. Moscow: Leningrad, 1949.
103 p. (in Russian)

Zuev V.E. New results of studies on atmospheric aerosol. Izv. AN SSSR. 1973; Vol. 9
(No.4): P.96-120. (in Russian)

Zykov A.A. Basics of Graph Theory. Moscow: Nauka, 1987. 384 p. (in Russian)



Name Index

Afanasieva—Ehrenfest T.A. 55

Akramov T.A. 93

Antsiferov E.G. xii, xiii, 93, 124,
136, 189, 191, 198, 207

Arnold V.I. 153

Arrhenius S. 59

Balyshev O.A. 161, 165

Bellman R. 50

Belykh L.I. 240

Boltzmann L. xi, 7, 11, 12, 17, 51-56,
65,70, 131, 251-257

Boreskov G.K. 25

Born M. 32, 44, 55, 56

Bowen R.M. 101

Bykov V.I xii

Caratheodory C. 44, 55, 56
Clausius R. xi, 7, 51, 159, 255
Coleman B.D. 101

Coriolis G. 13

D’Alembert J. xi, 48, 255
Dalton J. 142, 144
Dikin L.I. 197

Ehrenfest P. 270

Einstein A. xi, 11, 12, 20, 41, 61,
64-66, 256

Euler L. 23, 49, 50, 76, 134, 141,
151, 159, 255

Feinberg M. 101
Fenimore C.P. 231, 234

Fick A. 62
Filippov S.P. xii, 3
Fourier J. 12, 82

Galilei G. xi, 47-50, 251, 255

Gibbs J.W. xi, 11, 15, 30, 39, 40, 44, 51-55,
112,152, 153, 159, 224, 251, 252, 255

Glasser D. 101

Gorban A.N. xii, 2, 24, 72, 153, 155, 256

Gorshkov A.G. 240

Hamilton W.R. 255
Heisenberg W. 47
Helmbholtz H. 15, 50, 54
Hilbert D. 154, 251
Hildebrandt D. 101
Horn F. 101

Kaganovich B.M. xii, 3, 154, 161, 164
Karlin I.V. 256

Keck J.C. 101

Khasilev V.Ya. xiii, 154, 160, 164, 181
Kirhchhoff G.R. 166

Kronrod A.S. 153

Lagrange J. xi, 31, 48-51, 54, 56, 57,
59, 63, 104, 152, 255

Landau L.D. xi, 12, 40, 42, 53, 174

Lifshitz E.M. xi

Lyapunov A.M. xii, 33, 212

Markov A.A. xii, 2, 5, 51, 53, 83,

86-88
Maupertuis P. 49

275



276 Name Index

Maxwell J.K. 44, 51, 52, 153, 159,
160, 163, 170, 255
Merenkov A.P. xiii, 154, 160, 161

Newton 1. 48, 152, 160
Novitsky N.N. 161

Onsager L. 5, 88

Parmon V.N. 101

Planck M. xi, 12, 50, 65, 66, 258
Polak L.S. xii, 11

Pontryagin L.S. 50

Prigogine 1. 256, 263

Ramzin L.K. 215
Rozonoer L.I. 87, 119

Shirkalin I.A. 198-200
Semenov N.N. 40
Shinnar R. 72
Sommerfeld A. xi
Sumarokov S.V. xiii

Van—der—Waals J.D. 8-10, 124, 125,
145, 146, 151, 178

Volpert AL 154

Weierstrass K. 103

Yablonskii G.S. xii, 103

Zeldovich Ya. B. 40, 141, 288,

261
Zhukovsky N.E. 63, 64



Subject Index

Activated complex 60, 61
Active center 73, 128
Activity 10, 16, 33, 126128, 150
Algorithm
Antsiferov’s xii, 191, 198, 207
Dikin’s 197
of search for attainable states 1, 71
Shirkalin’s 199
Antsiferov’s technique 1, 189, 191
Auto (self)—oscillation 18, 97
Arcwise connectedness component 201

Balance
energy 166, 264
enthalpy 139
(non) linear 140, 156
of electric charges 74
of surfaces 128
of volumes 52
Balance polyhedron xii, 2, 3, 14-21, 24,
70-76, 134-141, 153-158, 194, 196,
201-206, 219, 228, 260, 261
Bifurcation 16, 17
Boltzmann’s paradox 55, 256, 257

Calculus of variations 50
Circuit
active 163, 166-169, 187, 249, 263
closed 162, 164, 167, 1878, 263
chemical xii
electric 44, 64, 152, 153, 159, 160,
256
heterogeneous xiii, 154, 161, 162, 171,
173, 174, 182, 183, 187

homogeneous 162, 170
hydraulic xii, xiii, 3, 4245 131, 154,
159-167, 183, 184, 256, 257
open 100, 162, 163, 168, 183, 187, 256,
263
passive 44, 153-170, 256, 263
with distributed parameters 161, 174
with lumped parameters 161-166, 170,
174, 180, 185, 188, 263
with variable (regulated) parameters 161
Closing relation 163-171, 176-182, 187
Coarse graining 257
Coefficient
air excess 226, 228, 233, 237, 240, 242,
243
diffusion 12, 62
heat transfer 88, 185
(hydraulic) friction 63, 164, 174
of chemical sensitivity 222-223
off heat (thermal) conductivity 82, 160
(rational) activity 10, 16, 33, 126, 127,
150
Computational experiment 1, 7, 16—18,
30-36, 39, 195, 210, 213, 214, 218,
220
Constant
equilibrium 59
rate 59, 95, 179, 181
Corrosion 225, 240, 244
Critical point 144

Degeneration (degeneracy)

of solution 39
of extreme state 208, 211

277



278 Subject Index

Distribution
Boltzmann 12, 52, 65, 131, 132, 223
current 44, 152, 153
equilibrium 4, 5, 33, 247, 248
Gibbs 52
(inverse) flow 154, 159-170, 174, 182,
187, 251, 262-264
Maxwell 52
non—stationary 263
potential 152
spatial 43, 214
Dual problem 49, 108, 194

Eigenvalue of the matrix 103, 144
Energy
activation 61
Gibbs (free) 9, 22, 54, 58, 69, 70, 91,
109, 110, 114, 115, 125, 126, 128,
130, 131, 134-138, 142-144, 146,
150, 151, 156, 157, 189, 190, 193,
195, 198, 200, 203, 210, 212, 219,
235, 246, 253, 261
Helmbholtz (free) 10, 22, 54, 90, 91, 125
internal 4, 7, 10, 22, 54, 82, 88
kinetic 7, 49, 50
potential 49, 50, 52, 125
surplus 125, 126
Enthalpy 9, 10, 17, 22, 23, 28, 29, 32, 36,
39, 44,91, 116, 122, 139, 147, 168,
185, 190, 215, 220, 229, 263, 264
Entropy 8, 10, 18, 21-24, 32, 41-46, 61,
67,72,74-83, 87,90, 93, 122, 134,
139, 140, 147, 148, 150, 155, 166,
168, 170, 187, 255-257, 263, 264
Equation
Antsiferov 125
Arrhenius 59, 61
(autonomous) differential 4, 18, 23, 44,

54,55, 60, 81, 85, 154, 255, 258, 259,

274

balance 10, 74, 76, 77, 82, 138, 140,
179, 186, 205

Boltzmann Kkinetic 52, 56

Darcy—Weisbach 63, 64, 159, 164, 174,
176, 178, 180

equilibrium 4, 12, 56, 57, 63, 64, 130,
255, 265

Euler 74, 134, 141, 151

Fick 62

Fourier 82

fundamental thermodynamic 54

electric neutrality 74, 126, 248, 250

Gibbs—see fundamental
thermodynamic

Gibbs—Helmbholtz 15

hydrodynamics 63, 160

ideal gas state 142, 161, 176, 177

Kirchhoff 163, 171

Lagrange 48-50, 54, 56, 57, 59, 63, 265

Navier-Stokes 160, 161, 165, 263, 264

of chemical kinetics 2, 72-88, 154, 257

of continuity 161

of mechanical system equilibrium—see
Lagrange

Planck 66

polytrope 176, 178

Redlich—-Kwong 8, 9, 125, 146

Stephan—Boltzmann 66

Van—der—Waals 8-10, 124, 145, 178

Zhukovsky 64

Equilibrium

condition 10, 28, 30, 55, 93, 94, 122,
178

criterion 23

final (complete) xi, xii, 13-17, 25, 37,
38, 67-70, 185, 190, 194, 211, 213,
218, 229, 245-248, 255, 257

intermediate—see partial

mechanical 48, 61, 66, 104

global—see final

partial (incomplete) xi, 5, 13, 31, 33,
66-69, 112, 113, 209, 210, 213, 258

phase 10, 150, 174, 178

point 2, 7, 14, 15, 32,75, 79, 81, 87, 88,
93-97, 185, 200, 203, 213, 245-247,
256

Ergodic Markov chain 2, 83, 86, 88

Feasibility xi, 17, 25, 26, 31, 191, 208,
211, 237, 254, 265

Flow
isothermal (gas) 166, 174, 175, 177, 179
laminar 162, 171, 174, 263
multicomponent 174, 175, 186
multiphase 45, 154, 171, 174, 182
polytropic 176, 178
turbulent 162, 164, 263

Fluidized—bed combustion 237



Subject Index 279

Fuel burning 29, 116, 129, 224-228, 236, of a balance polyhedron 18, 152—158,

243 200-208

Fuel combustion 3, 6, 13, 20, 25, 28, 39, oriented 44
40, 67, 116, 218, 225, 226, 232, directed 161
236-240, 244, 254 partial 206-208
Fuel processing 10, 13, 41, 68, 208, 244,
250 Hessian 103, 142
Full-scale experiment 5, 40, 42, 224, 225, Hydraulic shock 63, 64, 165
238-240, 254 Hydrogasification 244-246
Function Hydrogenation 68, 244
characteristic 70, 122, 189, 254, 258 Hydrogen production 244
concave 92, 104
continuous 103, 153 Ideal mixing reactor 96
distribution 51-53 (In) complete combustion 227, 239-244
cost 181, 182 Independent loop 44
H 52-55 Inhomogeneous structure 129, 154
homogeneous 21, 23, 74-76, 134, 141, Integrating factor 55

142, 151 ITonic strength of solution 127, 217
Lagrange 10, 48-51, 63, 104-107, 139,

147, 150, 167, 196, 263 Kuhn—Tucker condition 105-107
Lyapunov xii, 2, 37 Kinetic multiplier of the stage 80
(non) additive 9, 142
objective 25, 37-39 Lagrange (uncertain) multiplier 63, 75,
potential 154, 159, 255 106
single—valued 149 Law
smooth 87 Dalton 142, 144
(strictly) convex 87, 104, 145 (energy) conservation 49, 90, 160
of Marcelin—De Donder 80 first Kirhchhoff 130, 163
thermodynamic xiii, 5, 7-10, 22 first thermodynamic 55

Force Fourier 13
chemical affinity 32, 214, 220 kinetic 14, 81-88
electrical interactions 214 inertia 48
electromotive 256 of mass action 57-59, 72
gravity 130, 214 Ohm 65, 159
inertia 48, 65, 165 second Kirchhoff 163
surface tension 11-16, 131, 214 second of Newton 160
(wind) pressure 13, 63 second (thermodynamics) 56
third of Newton 48
Gas third (thermodynamics) 15
electron 39 of mass conservation 18, 130, 163
ideal 7, 8 Legendre transformation 83—-86
photon 7, 20 Liquid
real 9, 123-125, 146 ideal 63
surface 34, 123, 128 incompressible 164, 174, 263
Gibbs rule of phases 29 viscous 160
Graph
bichromatic 154 (Material) balance polyhedron 18, 70, 84
closed 153 (Mathematical) programming 102

cyclic 44 concave 39, 104



280 Subject Index

convex 38, 104
(non) linear 104, 107
parametric 109
Matrix
diagonal 186
nonnegative definite 103
(non)singular 103
paths 169, 264
positive definite 103
of element contents in the system
components 109
of connections of independent nodes to
branches 162
of the second derivatives 103
symmetrical 103
Mechanism
Fenimore’s 231
macro 15
of fuel burning 236
overall 27
reaction 26, 262
reversible 80
Zeldovich 261
Method
generalized linear programming 190
geometrical 152
first (direct) Lyapunov 212
Newton 194, 199
(of) affine scaling 194-199
of cycles 159
of Lagrange multipliers 104-108
of local potential 87, 88
of loop currents 153, 159
of loop flows 159-163
of nodal pressures 159-163
of potentials 44, 153
of support cone 190
simplex 108
simplex embedding 191-193
steepest descent 195
Model
equilibrium 4, 64
extreme 64, 102, 213
graphical 45, 153-157
heterogeneous 8, 150
kinetic 254, 259
macroscopic 5, 56, 57
mathematical 112, 154, 161
(non) additive 146, 150, 151

(non) isothermal of the atmosphere
223

of extreme intermediate states 112—117

of final equilibria 109-112

of fires 186

of heterogeneous network 174

of motion 74

of (non) stationary flow distribution
160-170, 259

of rest 251

of systems with variable extents of
reaction completeness 119

of systems with variable initial
composition 117

of spatially inhomogeneous structures
129

of vertical air column 222

one dimensional potential of irreversible
flow 263

thermodynamic 109-117, 159-188,
213-250

Numerical experiment 213-250
Nitrogen oxides

prompt 226-237

fuel 232-244

thermal 230, 260

Onsager relations 88
Odd attractor 17

Parameter
extensive 134
intensive 134
reduced 144
Pfaffian form 55
Periodic combustion 239
Phase interface
transition 120
Piezometric plot 174, 178
Plasma gasification 247
ignition 224-226
lightening 224-226
Polyhedron of constrains 71, 104
Potential
chemical 54, 73, 94-97
dimensionless (pseudo) 77-87
hydraulic 174
local 72, 87, 88



nodal 162, 163, 183-188
thermodynamic 56, 209, 258
kinetic 50
Pollutant(tion)
secondary 36, 216-224
primary 36, 216-224
Pressure
osmotic 61
partial 59, 136, 143
saturation 136
standard 73
total 7
Principle
(detailed) equilibrium 4, 47-59
(detailed) balancing 65, 80
inertia 47-48
of conservation 48
of D’Alembert 48
of extremality 47—100
of Galilei 47-50
of least action 49-51, 171
of microscopic reversibility 5, 11, 19
of virtual work 48, 63, 161-171
statistical 56
variation 87
Principal minor of the matrix 103, 104
Process
adiabatic 176
atmospheric 213-224
chemical 57-61, 72-88, 213
combustion 225-244
of diffusion 13, 213-224
electric conductivity 56
heat transfer 88, 185
(ir) reversible 253-265
isoentropy 256
Markov random 51
(non)—stationary 63
(non)—steady 182
motion of viscous liquids 56, 160
(of) high energy chemistry 213, 247
photochemical 213
plasma 224-226, 247-250
periodic 239
quasistatic 50
radiation 56, 224, 256
thermal conductivity 160
transfer 56, 115, 254
wave 63

Subject Index

Pulverized combustion 226, 237-239
Pyrolysis 68, 210-212, 243-246

Reaction
complex chemical 58
elementary 26-28, 73, 94
endothermic 29
exothermal 235
forward 59, 73-80
heterogeneous catalytic 94
isomerization 70, 113, 116, 155
monomolecular 97, 179, 209
reverse 59, 73-80
overall 27

Region
attainable—see Thermodynamically

admissible region

of stationary state 96

Saddle point 106
Schifrinson formula 174
Self—organization 262
Self—oscillation 254
Sensitivity 31, 154, 211, 220
Set

admissible 103, 168

concave

convex 103

closed

limited 103

of constraints 104

of equilibrium states 95

of stationary states 97
Shock wave 64

Signature 95-100

Simplex 205-208, 217-219

Solution 126-128

281

Stability (by Lyapunov) 23, 33, 209-212

(Standard) chemical affinity 32, 220
State

attainable 1-3, 26, 70-72, 114, 153, 210,

257,263
critical 144
metastable 74, 76
partial equilibrium xi, 13, 31, 33, 69,
112,209, 213
stationary 6, 93, 96-100, 256
Slag 225
Spatial ordering 4, 254



282 Subject Index

System

conservative 4, 49, 57

heterogeneous 8-10, 38, 121, 162, 214,
218

homogeneous 8-10, 88, 93, 121, 162

isolated 21-23, 51-55, 121-123,
166-169, 255, 256

(non-) additive 9-10, 38, 76, 124,
146-151

open 74

spatially inhomogeneous 129-132

Theorem
duality 108
Euler 23
H 52
Kirchhoff—(Maxwell) 160-163, 167,
170, 256
Kuhn-Tucker 106
of saddle point 106
Prigogine 256, 263
Weierstrass 53
Theory
analytical of heat 47
Brownian motion 12
Debey-Hiickel 127
electric circuits 153, 159
graph 154
heterogeneous circuits 171, 188
hydraulic circuits 154, 159-164
kinetic of gases 47, 51, 61
of information 11
of optimal control 50
of quantum liquids 174
thermodynamic of structure, stability
and fluctuations 11
Zeldovich’s 228
Thermal destruction 224-244

Thermodynamic equivalence 2, 24, 25, 75,

153
Thermodynamic “pothole” 139, 156, 189,
239, 245

Thermodynamic preorder 24, 75
Thermodynamically admissible path 24,
75, 81, 156, 200, 206, 211
Thermodynamically admissible region
102-121, 168, 192, 197
Thermodynamically admissible trajectory
115
Tree
of functions 153
spanning 44, 153, 184
thermodynamic (of entropy) 24,
155-158, 200-207

Variable
conjugate 75, 83-86
fast and slow 20, 72, 83-86
macroscopic 4, 21, 74-79, 83-85,
255
microscopic 4, 33, 55, 83, 257
Vector
correction 195
eigen of matrix 103
of effective heads 161-171
of effective pressures 264
of external sources and sinks at nodes
129-132, 161, 162, 168, 169, 256
of flows in the circuit branches 162
gravitational heads 183-187
head losses 45, 63, 162-169, 174, 182
of heads at nodes
Lagrange multipliers 31, 75, 83,
106-108, 167, 194-196
of intensive quantity 73, 81, 82
pseudopotentials 18, 78-82, 87
of nodal flows 168
nodal pressures 159-163, 264
pressure drop 165, 224, 264
stoichiometric 73, 77-82, 89, 95
Volume
of contact area 82
of process 77
simplex 191





