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1
Principles of Equilibrium and
Extremality in Mechanics
and Thermodynamics

A bearded sage once said that “there’s no motion.”

His colleague strode before him. Stricken mute,

He could no stronger argue or refute;

All praised the cunning answer with devotion.

Odd episode! But, men, I recollect

An old example from my mental journal

The sun before us strides in steps diurnal

Yet stubborn Galileo stands correct!

A.S. Pushkin

1.1. Principles of Equilibrium and Extremality in Mechanics

Thermodynamics theory, like physics in general, developed from mechanics, and
though the appearance of thermodynamics is associated with the analytical theory
of heat [51] and the kinetic theory of gases [21], its roots penetrate deep into
mechanics. Therefore, prior to an analysis of the thermodynamic principles, it is
useful to discuss the basic principles of mechanics.

At the end of the 1960s the the beginning of the 1970s Heisenberg included
mechanics and thermodynamics along with statistical physics in the four closed
theories (models) of the modern physics. The two remaining are special theories of
relativity and quantum mechanics. By “closed” Heisenberg meant the possibility
of an exhaustive and noncontradictory explanation for all the phenomena that relate
to the subject of a relevant theory.

The main principles of mechanics and thermodynamics that allow a description
of the whole set of their applications can be called the principles of equilibrium
and extremality.

Not dwelling on Archimedes formulation of the equilibrium laws as applied to
individual mechanisms and a body (his own, in this case) submerged in liquid,
the story of the development of equilibrium principles should begin with Galileo
Galilei, who employed the notion of uniform motion for formulation of his inertia
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law. This motion can be seen as a continuous sequence of states in each of which
the forces that act on the system are in equilibrium. It also becomes clear from the
inertia law that the description (a model) of a uniform motion can be replaced by
the description (a model) of a state of rest, i.e., an equilibrium state. D’Alembert
introduced inertial force to describe the equilibrium state, which made it possible
to consider the nonuniform mechanical motions as those passing only through
such states.

It is natural to interpret the second and third laws of Newton in equilibrium
terms. The second law determines equilibrium between the driving force and inertia
force of the system at issue and the third law—equilibrium between the action and
counteraction.

However, a strictly formalized presentation of mechanics as a science on equi-
libria and extrema was given by Lagrange in his famous “Mechanique analytique”
[118]. He chose the equation of mechanical system equilibrium∑

j

c j (x)dx j +
∑

i

λi (ϕ)dϕi = 0, (1.1)

which was based on the principles of Galilei and d’Alembert, as the starting point
for reconstructing all Newtonian mechanics.

The variables c, x , λ and ϕ are, respectively, a driving force, a coordinate, an
unidentified multiplier (a bond resistance force) and bond deformation, and i and
j are indices of driving forces and bonds.

Equation (1.1) is interesting for our analysis in many respects, and we will refer
to it many times in this book. First of all, it is used to reveal the interrelations
among the principles of conservation, equilibrium, and extremality.

To reveal conservation of some quantity, let us note that each sum in the left-hand
side of (1.1) has the dimensionality of energy (or work). Hence, at an infinitesimal
deviation of a system from its equilibrium state, the work expended on its travel
is equal to zero and the energy remains unchanged. The interpretation of the (1.1)
represents the principle of virtual work (PVW).

Analyzing his equation, Lagrange revealed the connection between the equilib-
rium and extremality principles from the fact that, if a left-hand side of (1.1) rep-
resents a total differential of some function, the solution to the equilibrium search
problem coincides with the solution to the problem of finding the extremum of
this function. The extreme problem has the following form:

Find

extr

(
L =

∑
j

c j (x)x j +
∑

i

λi (ϕ)ϕi

)
, (1.2)

where L is the function that was subsequently called a Lagrange function.
The assumption that an infinitesimal change in the function is a total differen-

tial in terms of physics means the mutually unique correspondence between the
system’s state determined by the values x j and ϕi , and the value of function and,
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hence, the potentiality of its field and equality,∮
d L = 0. (1.3)

To facilitate further physical interpretation of the Lagrange equation, we trans-
form it to the form

dT − d� = 0, (1.4)

where T and � are kinetic and potential energy of the system, respectively.
The possibility of such a transformation is obvious: The work of the driving

forces c j is done through kinetic energy, and bond deformations affect the potential
energy of the system. Naturally, the differentials of these energies have different
signs as a decrease in one corresponds to an increase in the other. The systems
for which equations (1.3) and (1.4) are met and the energy conservation laws
are reduced to the constancy of the sum T + � are called conservative systems,
because no energy is dissipated in them.

In writing equation (1.1) Lagrange divided the forces applied to the mechanical
system into two groups: 1) those bringing the system to a motion (c j ), and 2) those
resisting to this motion (λi ). The idea appeared to be excellent from a mathematical
viewpoint, as it allowed one both to formulate the problems of search for the
extremes of type (1.2) and to pose the problems of a conditional extremum. In
the latter case, the total work of driving forces is an objective function and the
expressions for the work of the bond deformation make up a system of constraints.
Thus, Lagrange’s formulation of the equilibrium problem underlay the description
of modern problems of mathematical programming (MP) [19, 94, 142], which can
be defined as a mathematical theory of extrema.

Note that it seems natural to use MP in thermodynamic studies as thermody-
namics is a science about extrema and equilibria.

Formulation of the equilibrium problems in MP terms facilitates their physical-
mathematical interpretations. So, it becomes clear that the solution to an equi-
librium problem corresponds to the saddle point of function L . Since the driving
forces c j try to move the system as far as possible from the initial state, and the
resistance forces λi try to decrease the bond deformations, the equilibrium between
c j and λi corresponds to maximum work of the former and minimum work of the
latter. Hence follows the possibility of dividing MP problems into ones of direct
(maximization) and dual (minimization) problems, and the term “dual estimates”
used by mathematicians as applied to λi become clear.

Based on the works by Maupertuis and Euler, Lagrange integrated (1.2) with re-
spect to time and formulated mathematically a basic extreme principle of physics—
a principle of least action (PLA):

δ J = δ

τ2∫
τ1

Ldτ = δ

τ2∫
τ1

(T − �)dτ = 0, (1.5)

where δ is a function variation, J is an action, and τ is time.
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Those who developed variation (extreme) principles of mechanics [124, 141]
introduced the key (in terms of thermodynamics) notions of reversible equilibrium
processes into the science, though they did so without providing appropriate terms.
Euler showed that PLA was met only for motion without friction, which, as is now
known, causes irreversibility. Planck was the next to call the PLA a universal
principle of equilibrium processes [139].

The most important property of the equilibrium systems was discovered by
Jacob Bernoulli, who showed that if any curve had the property of having either a
maximum or a minimum, then any infinitesimal part of the curve had this property.
This principle can be considered a prototype for formulations of extreme princi-
ples in the theory of optimal control (by Pontryagin, Bellman, etc.). It follows
from the principle that any state can be fixed in an equilibrium process. A prehis-
tory of its attainment does not matter. Further optimal behavior of the system is
determined only by this state. In the modern textbooks of macroscopic thermo-
dynamics [20, 115, 117], equilibrium processes are usually defined as infinitely
slow and quasistatic. However, a property they possess (revealed in mechanics)—
that of possibily setting off any intermediate state from a continuous curve of the
process—is of principal importance for the modern analysis of thermodynamic
models.

The Lagrange derivation of equation (1.5), optimal motion trajectory of a me-
chanical system (PLA), from equation (1.1), optimal equilibrium state (PVW),
and further study of the properties of these trajectories in mechanics, extended
the understanding of interrelations between the models of rest and motion (first
revealed by Galilei), and principal capabilities of thermodynamic modeling based
on elimintation of the time variable.

The use of a Lagrange function taking an extreme value for systems in equilib-
rium states in the equations of motion in the form of difference between kinetic and
potential energy (T − �) allowed Helmholtz to define it as a “kinetic potential”
or as a “free energy of the system”. The latter definition is of an explicitly thermo-
dynamic character. Its essence is in the fact that for useful (efficient) movement, a
system need not use all the kinetic energy, but only the part that remains free from
the work of bond deformation.

Mathematically the PLA development and application is associated with the
creation of the calculus of variations (CV), which is the study of the extreme tra-
jectories of system motion. The ideology of CV can also be useful for mathematical
analysis of thermodynamic problems.

1.2. Principles of Equilibrium and Extremality
in Thermodynamics

Thermodynamics, unlike mechanics, entails the study of systems undergoing trans-
formations of substances and energy, as well as dissipation of the latter. It con-
siders functions (heat q and work l) whose changes, as the system passes from
one state to another, depend on the path of the transition, and hence, heat and
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work’a infinitesimal changes are not total differentials. Therefore, for thermody-
namic systems the admissibility of the Lagrange assumption on correspondence
between the problems of search for equilibrium and search for extremum falls far
short of being obvious.

The efforts put forth in reducing to mechanics wrote a number of important
pages in the history of the initial period of thermodynamic theory. Emergence of
thermodynamics is associated with the development of the kinetic theory of gases.
In the course of this development, in the 1860s, Clausius discovered the existence
of a function, i.e., entropy, that is monotonically nondecreasing in isolated systems.
Clausius, Boltzmann, and other researchers endeavored to explain this property of
entropy—the property of irreversibility of the natural processes. Their explanation
was based on the principles of mechanics, first among them, on the principle of
least action (PLA). However, their efforts showed the principal impossibility of
reducing thermodynamics to mechanics and explaining the asymmetry of changes
with respect to time in thermodynamic systems by the models of conservative
mechanic systems.

Clausius, Maxwell, Boltzmann, and Gibbs showed that the nature of irreversibil-
ity can be revealed by passing from a deterministic to a probabilistic interpretation
of physical laws.

Boltzmann, being unfortunately unfamiliar with the works of Russian math-
ematicians, in fact applied the technique of Markov random processes and the
Lyapunov functions [140] to study the regularities of gas movement in a closed
vessel. He chose as a base equation the kinetic equation for a gas consisting of
particles of one kind. The equation was later assigned his name and has the form

∂ f

∂τ
+ v

∂ f

∂r
+ 1

m
F

∂ f

∂ϑ
=

∫
( f ′ f ′

1 − f f1)uσ (u, ϑ)d
dϑ1, (1.6)

where f (ϑ, r, τ ) is a function of distribution of gas molecules (particles) by veloc-
ities ν and coordinates r ; ϑ and r are vectors (dϑ = dϑx dϑydϑz , dr = dxdydz);
F(r, τ ) is the force acting on the particle (can depend on the velocity as well); m
is particle mass; u = |ϑ − ϑ1| is a relative velocity of colliding particles; σ is a
differential effective cross-section of particle scattering into the solid angle d
;
ϑ is an angle between a relative velocity and the line connecting the particles. A
prime on a function f in (1.6) indicates the state of the particles after collision
and the absence of a prime indicates their state before the collision; the index 1
indicates particles colliding with those subject to distribution f .

The first term on the left-hand side of (1.6) is a change in the density of the
number of particles in the element of a phase volume dϑdr per time; the second and
third terms characterize the changes in the distribution function due to movement
of particles in space and the action of external forces, respectively. The integral of
collisions on the right-hand side of (1.6) determines the change in f . This change
is related to the particles’ departure from the element of phase volume at the so-
called “direct collisions” and replenishment of the volume with the particles that
underwent “reverse” collisions.
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Generally, the equation (1.6), the Boltzmann kinetic equation, reflects the bal-
ance of the number of particles in the element of phase volume. The balance is main-
tained at a change in f (ϑ, r, τ ) due to the motion of particles under the action of ex-
ternal forces and collisions among them. Note that this equation takes into account
only paired collisions and is true only for not too dense and not too rarefied gases.

For a gas in statistical equilibrium the integral of collisions vanishes and the
Maxwell distribution by the velocities of particles

f (ϑ, r ) = A exp

(
−mϑ2

2

1

kT

)
, (1.7)

becomes the solution to equation (1.6) in absence of a potential field, where k is a
Boltzmann constant, A is a constant determined from the condition of normaliza-
tion (the total number of particles for all possible states is equal to the total number
of particles in the system), and T is the absolute temperature.

For a system in the external potential field, the Maxwell distribution is replaced
by the more general Boltzmann distribution,

f (ϑ, r ) = A exp

(
−

(
mϑ2

2
+ U (r )

)
1

kT

)
, (1.8)

where U (r ) is a potential energy of a particle in the external field.
After we integrate the distribution function (1.8) by all the impulses of particles,

we can represent the Boltzmann distribution in the form of an equation that is used
to determine the density of the number of particles in the point r as

n(r ) = n0 exp

(
−U (r )

kT

)
, (1.9)

where n0 is a density of the number of particles that corresponds to the point in
which U (r ) = 0.

For a mix of gases with particles of different mass, the Boltzmann distribution
shows that the distribution of partial densities of particles for each component does
not depend on the other components. The Gibbs distributions [55] together make
up the generalization of the Boltzmann distribution for nonideal systems.

Along with the interrelation revealed between the kinetics of gases and equilib-
rium statistical distributions, Boltzmann’s analysis of the kinetic equation resulted
in another very important conclusion for a closed and noncontradictory description
of thermodynamics. He formulated it in the form of the H -theorem, according to
which, for an isolated system, there is an H -function that monotonically decreases
with time:

H =
∫

h(r, τ )dr =
∫∫

f (ϑ, r, τ ) ln f (ϑ, r, τ )dϑdr , (1.10)

where h(r, τ ) is a spatial density of the H -function, which means the local density
of entropy (S) with reversed sign and f (ϑ, r, τ ) satisfies the kinetic equation (1.6):

∂ H

∂τ
=

∫∫
(1 + ln f )

∂ f

∂τ
dϑdr . (1.11)
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Substituting ∂ f
∂τ

from (1.6) into (1.11) and symmetrizing the obtained expression
with respect to the distribution function of colliding particles in direct and reverse
collisions it can be shown that

∂ H

∂τ
≤ 0. (1.12)

The H -function equals the gas entropy with a reverse sign and divided by k,
therefore, the H -theorem expresses the law of entropy increase in isolated systems,
i.e., it can be considered a formulation of the second law of thermodynamics. Math-
ematically, the inequality (1.12) is equivalent to the more widely spread expression

d S ≥ 0. (1.13)

The detailed conclusions and analysis of the presented relationships (1.6)–(1.12)
can be found in special monographs; for example, in the fifth [125] and tenth [127]
volumes of Theoretical Physics, by Landau and Lifschitz. Here we use these
relationships to find the interrelations between the descriptions of motion and rest
(equilibrium).

Bearing in mind that the equations of equilibrium distributions (1.7)–(1.9) have
no time variable τ and, hence, the equilibrium state can be determined from a
simple calculation of probabilities, Boltzmann concluded that it was possibile to
exclude the notion of time from thermodynamics as a science of equilibrium. From
the tendency of systems that satisfy the kinetic equation (1.6) to the minimum of
the H -function (1.10) having the properties of a Lyapunov function, and, hence,
towards the maximum of S, another conclusion follows relating to convergence of
thermodynamic problems to the mathematical problems of the search for extrema.
This conclusion is very important to our analysis.

Assuming, along with the Markov character1 of the random motion process that
underlies the derivation of the equation (1.6), the entropy additivity of the studied
thermodynamic system, it is easy to explain the third2 great Boltzmann equation:

S = k ln w. (1.14)

Indeed, if system entropy is a function of state probability (a fact that is clear
from the previous text), and if the entropies of individual parts of this system do not
depend on the entropies of the others (also true, since the effects on a subsystem’s
state due to interactions between particles within is much stronger than interactions
with other subsystems), the following relationships turn out to be clear:

S = f (w), (1.15)

S =
∑

j

S j , (1.16)

w =
∏

j

w j . (1.17)

Equation (1.14) follows from (1.15)–(1.17).

1 The Markov character is that which describes how the evolution from a fixed state is
independent of the history of its attainment.
2 The two others are (1.6) and (1.9).
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Besides S, the other characteristic thermodynamic functions (those which take
extreme values under certain conditions of system interaction with the environ-
ment) are also additive. These functions are internal energy U , enthalpy H , free
energy of Helmholtz F , Gibbs energy (free enthalpy) G. The mathematical inter-
dependencesies of U , H , F , and G with entropy are found using the differential
equations of thermodynamics.

The following equations [54] were chosen by Gibbs as the fundamental ther-
modynamics equations (that is, they can be used to find all other necessary
relationships):

At independent S, V , and x ,

dU = T d S − PdV +
n∑

j=1

μ j dx j ; (1.18)

at independent S, P and x ,

d H = T d S + V d P +
n∑

j=1

μ j dx j ; (1.19)

at independent T , V , and x ,

d F = −SdT + V d P +
n∑

j=1

μ j dx j ; (1.20)

at independent T , P , and x ,

dG = −SdT + V d P +
n∑

j=1

μ j dx j , (1.21)

where P is pressure, V is volume, μ is chemical potential, x is a mole quantity,
and j = 1, . . . , n is an index of each component of the system.

As in the Lagrange equation of equilibrium (1.1), each term in equations (1.18)–
(1.21) has dimensionality of energy (work). Each type of work done in the system
is determined by taking the product of corresponding potentials using conjugated
coordinates.

Whereas Boltzmann drew on the example of ideal gas systems to show how it
was possible to pass from descriptions of motion (kinetics) to those of equilibrium
state, Gibbs extended those equilibrium principles to complex multiphase systems.

There have been a countless multitude of proofs to the trustworthiness of first the
principles of equilibrium macroscopic thermodynamics presented systematically
by Boltzmann and Gibbs. The theory has shown the highest scientific efficiency
for more than a century.

However, the validity of using the thermodynamic principles of equilibrium and
extremality for description of any macroscopic nonequilibrium and irreversible
processes (including the motions of a huge number of particles) has not yet been
strictly proved. Indeed, when Boltzmann derived and used his kinetic equation
(1.6) he supposed that motion and collision of individual particles obeyed the
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laws of classical mechanics and were thus reversible, but he considered the final
result of the process to be irreversible, i.e., attainment of a state with a minimum
value of H -function (or a maximum of entropy3). Thus, his conclusion on the
isolated systems’ tendency toward equilibrium turned out formally contradictory
to the initial assumptions of his work (which is thus referred to as “Boltzmann’s
paradox”).

Gibbs in his book Statistical Mechanics [55], what was specially intended to
rationally substantiate macroscopic thermodynamic theory, also started with an
a priori assumption on equilibrium distributions of probabilities of microscopic
variables (for example, particle energy).

In the context of the difficulties in substantiating the applicability of thermody-
namic models to the studies of many real macroscopic systems the interpretation
of equilibrium thermodynamics suggested by T.A. Afanasieva-Ehrenfest [2], C.
Caratheodory [27] and M. Born [23] and based on the Pfaffian form technique, is
rather interesting.

The Pfaffian form

d� =
∑

i

Xi dxi , Xi = fi (x) (1.22)

is a generalized notion of the function differential, but in a general case its change
depends on the trajectory of transition from one point to another in the space of
independent variables x . Hence, it may appear that∮

d�. (1.23)

Transition from the equation with the Pfaffian form to a differential equation
becomes possible in the case of a Pfaffian forms holonomicity, i.e., the existence
of such functions α(x) (integrating factors) for which

d f = α(x)d� (1.24)

is a total differential. Pfaffian forms of no more than two variables are always
holonomic. In thermodynamics the most important transformation of a Pfaffian
form to the total differential is given by

1

T
dq = d S, (1.25)

where is 1/T an integrating factor.
It is precisely the possibility of transformation (1.25) that allows us, in a number

of cases, to explain the validity of formulating the equilibrium conditions for
thermodynamic systems in the form where the left- and right-hand sides are equal
to zero in the fundamental Gibbs equations (1.18)–(1.21). Besides, we start to
better understand the significance of the inequality (1.13) with its left-hand side

3 It is impossible to simultaneously change the signs of velocities for a huge number of
particles that make up a macroscopic system.
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being a total differential of the function that has all the properties of potentials.
Indeed, it represents the basic extreme thermodynamic principle, which asserts
the irreversibility of natural processes (the tendency to the entropy maximum, i.e.,
the second law of thermodynamics). Hence, the behavior of this function can be
described by the models of equilibrium processes.

Certainly, it should be noted that the macroscopic substantiation of thermody-
namics by Caratheodory and Born does not imply its reducibility to mechanics.
In particular, the approach developed by them does not allow standard values of
thermodynamic functions (a mole, free energy, chemical potential, etc.) whose
statistical character is to be calculated.

A principal possibility of describing one or another problem in terms of equilib-
rium thermodynamics allows the specific thermodynamic models to be constructed
using the equations analogous by form to the equilibrium equations of classical
mechanics. The thermodynamic potentials’ values, calculated on the basis of the
principles of statistical physics or experimental data, can be substituted into these
equations similar to the manner that mechanical forces values are substituted. Fur-
ther, in this book we use the formalism of mechanics in the construction of our
models many times, certainly bearing in mind the need to decide on the admissi-
bility of such a technique in each specific case.

1.3. Thermodynamics and Models of Motion

Let us endeavor to derive the thermodynamic equations of some motion processes
of macroscopic systems based on the principle formulated in the previous section,
i.e., let us determine whether, if the studied system can be described in terms of
thermodynamic equilibria, it then becomes possible to apply the equations similar
in form to the mechanics equations. Here we mean chemical transformations and
transfer processes (diffusion, thermal and electric conductivity, motion of viscous
and ideal liquids, radiation). The relationships discussed below can be strictly
substantiated only by using the Boltzmann kinetic equation and the statistical
principles. The “macroscopic” derivations of these relationships are useful here,
as the subject of the present book is a macroscopic modeling of various physical-
chemical processes, and macrodescription of relations among the processes studied
becomes important for such a modeling.

Of special interest here is the use of the Lagrange equilibrium equation (1.1),
which underlies mathematical programming. This is because the thermodynamic
models we suggest are formulated in terms of mathematical programminf as well.

Figure 1.1 presents a conventional scheme of ties among thermodynamics and
the divisions of theoretical physics. A starting point of the scheme is certainly the
classical mechanics. It “feeds” all the other physical sciences. Thermodynamics
is a field of study connected directly with mechanics, statistical physics and kinet-
ics. The latter here embraces both microscopic kinetics (based on the Boltzmann
equation) and macroscopic kinetics (comprising chemical kinetics and transfer
processes). Unlike thermodynamics, which studies the states of rest of macro-
scopic systems, kinetics deals with the study of motion toward these states. In
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Classical mechanics Quantum mechanics

Thermodynamics

Hydrodynamics

Statistic
physics

Kinetics

Chemical
transformations

Theory
of elasticity

Electrodynamics
of continua

Physics of continua

Figure 1.1. Relations of thermodynamics to other divisions of theoretical physics.

fact, kinetics is generally defined as a science of system relaxation in the direction
of equilibrium. Thus, the models of motion and rest belong to one and the same
science—mechanics—when applied to conservative systems. For nonconservative
systems accounting for the huge number of particles is imported, and therefore the
motion and the rest are considered by distinctly different sciences.

The possible ways to use the macroscopic models to pass from one scince
(kinetics) to the other (thermodynamics) are presented below. The results obtained
are intended to be used theoretically in the general area of thermodynamics applica-
tion for a continuous media (see Fig. 1.1). The thermodynamic model as presented
here, unlike traditional treatments, includes chemical transformations, though only
for macroscopic descriptions of chemical systems. Practical applications of ther-
modynamic models coincide with those of macroscopic physics and chemistry.

The Law of Mass Action

Let us analyze the relationships between macroscopic models of motion and
rest starting with the “mechanical” derivation of the main law of ideal chemi-
cal kinetics—the law of mass action (LMA).

We write the equilibrium equation for a complex chemical reaction that takes
place at fixed T and P in a form analogous to the Lagrange equation (1.1):

l∑
j=1

G j
(
y, x p

)
dy j +

n∑
j=l+1

G j
(
y, x p

)
dx j

+
m∑

i=1

λi d

(
bi −

l∑
j=1

ai j y j −
n∑

j=l+1

ai j x j

)
= 0

(1.26)
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where G j is molar Gibbs energy of the j th reagent; y = y (y1, . . . , yl) and
x p = (xl+1, . . . , xn) are vectors of mole quantities of initial reagents and reac-
tion products, respectively; ai j is a mole quantity of the i th element in a mole of
the j th component; and bi is the mole quantity of the i th element in the system.

Since the “bonds” (constant values bi ) in a chemical system are undistortable,
the last sum in the left-hand side of equation (1.26) is identically equal to zero.
Hence, the equation

l∑
j=1

G j
(
y, x p

)
dy j +

n∑
j=l+1

G j
(
y, x p

)
dx j = 0. (1.27)

turns out to be valid.
Making the assumption that the detailed equilibrium principle is observed, we

pass from differentials to final differences and from the latter to stoichiometric co-
efficients. Summing up these coefficients for all stages, in place of (1.27) we obtain

l∑
j=1

G j
(
y, x p

)
ν j +

n∑
j=l+1

G j
(
y, x p

)
ν j = 0, (1.28)

where ν j is a stoichiometric coefficient positive for the reaction products and
negative for the initial reagents.

For the ideal system the following relations are met:

G j
(
y, x p

) = G0
j + RT ln

(
P

y j

σ

)
, j = 1, . . . , l; (1.29)

G j
(
y, x p

) = G0
j + RT ln

(
P

x j

σ

)
, j = l + 1, . . . , n; (1.30)

σ =
l∑

j=1

y j +
n∑

j=l+1

x j , (1.31)

where G0
j is a standard value of molar Gibbs energy and; R is universal gas constant.

Therefore, equation (1.28) can be transformed to the form:

l∑
j=1

G0
jν j + RT

l∑
j=1

ν j ln

(
P

y j

σ j

)
+

n∑
j=l+1

G0
jν j + RT

n∑
j=l+1

ν j ln

(
P

y j

σ j

)
= 0.

(1.32)

Taking into account the signs of ν and introducing the notation

G0 =
n∑

j=l+1

G0
jν j −

l∑
j=1

G0
jν j ,

we then make elementary transformations of the equation (1.32), obtaining:

n∑
j=l+1

ν j ln
(

P
x j

σ

)
−

l∑
j=1

ν j ln
(

P
y j

σ

)
= −G0

RT
,

n∏
j=l+1

(
P

x j

σ

)ν j
l∏

j=1

(
P

y j

σ

)−ν j = exp

(
−G0

RT

)
. (1.33)
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Since

Px j

σ
= Pj , (1.34)

where Pj is a partial pressure of the j th component, the equation for the reaction
equilibrium constant K p directly follows from (1.33):

K p =
n∏

j=1

P
ν j

j = exp

(
−G0

RT

)
, (1.35)

i.e., a “thermodynamic” formulation of law of mass action (LMA).
To pass to the “kinetic” formulation of LMA, we assume that the concentrations

of system components are equal to their partial pressures, i.e., P/σ = 1. That such
an assumption is possible is obvious, since the sizes of the system (a total mole
quantity) do not affect the mechanism of reaction. The assumption made, equation
(1.33) can be replaced by the equivalent equation,

n∏
j=l+1

(
x j

)ν j
l∏

j=1

(
y j

)−ν j = exp

(
−G0

RT

)
, (1.36)

Taking into account that, in the equilibrium state, the rate of the forward reaction,

w+ = k+
l∏

j=1

y
ν j

j (1.37)

is equal to the rate of the reverse one,

w− = k−
n∏

j=1+1

x
ν j

j , (1.38)

i.e.

w+ = w− = w, (1.39)

we obtain the relationships

k+

k− =
n∏

j=l+1

(
x j

)ν j
l∏

j=1

(
y j

)−ν j = K p, (1.40)

That, together with equation (1.35), testify to the equivalence of the chemical
equilibrium principle to the law of mass action.

Arrhenius Equation

Now let us try to use the Lagrange equation to clear out the type of equations that
determine the constant rates of reactions (k) that enter into the expressions (1.37)
and (1.38).
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Let us assume that nearing equilibrium the reaction rate w becomes constant(
dx

dτ
= const

)
and equal to a mole quantity of the activated complex xcom that is

formed per unit time. Then the equation of the chemical system equilibrium will
have the form

n−1∑
j=1

G j
(
ya, xcom

)
dy j + Gcom

(
ya, xcom

)
dxcom = 0, (1.41)

where y is a mole quantity of the initial reagents taking part in the reaction. For the
above reason this equation does not include the differential of bond deformation.
Using the assumptions made when deriving LMA, we pass from (1.41) to the
expressions

n−1∑
j=1

G j
(
ya, xcom

)
ν j + Gcom

(
ya, xcom

) = 0 (1.42)

and

n−1∑
j=1

(
G0

j + RT ln

(
P

ya
j

σ

))
ν j + G0

com + RT ln
(

P
xcom

σ

)
= 0, (1.43)

where σ =
n−1∑
j=1

yc
j + xcom, and yc

j is the overall mole quantity of the i th reagent

in the initial state of the system. Based on the positivity of xcom (xcom > 0) and
negativity of ν j at j = 1, . . . , n − 1 (ν j < 0) and satisfaction of the equality

P

σ
= 1,

(the above made assumption) it follows from (1.43) that

xcom = w = e− G0

RT

n−1∏
j=1

(
ya

j

)−ν j
, (1.44)

where

G0 = G0
com −

n−1∑
j=1

G0
jν j .

Since, according to LMA,

w = k
∏

j

(
yc

j

)ν j
, (1.45)

it follows from (1.44) and (1.45) that

k = exp

(
−G0

RT

) n−1∏
j=1

(
ya

j

)ν j
n−1∏
j=1

(
yc

j

)−ν j
. (1.46)
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Assuming that an activated complex is formed adiabatically (entropy does not
change) we can pass from the equation (1.46) to the expression

k = exp

(
− E

RT

) n−1∏
j=1

(
ya

j

)ν j
n−1∏
j=1

(
yc

j

)−ν j
, (1.47)

where E is an activation energy.
Finally, by introducing the notation

z =
∏

j

(
ya

j

)ν j
∏

j

(
yc

j

)−ν j
, (1.48)

we arrive at the generally accepted formulation of Arrhenius’ law

k = z exp

(
− E

RT

)
. (1.49)

The obtained relationships (1.48) and (1.49) to a certain extent reflect the real
regularities. Thus, it is seen from (1.48) that pre-exponential multiplier z decreases
rapidly with an increase in reaction order (rise of ν j ), which is certainly true.
However, here it is appropriate to emphasize that such “mechanical” conclusions
by no means imply reducibility of thermodynamics and kinetics to mechanics.
For example, in this case when deriving equation (1.49) the standard Gibbs mole
energies were used as constant values in the initial equations. The values of these
energies can be determined only by the principles of statistical physics. Either
the kinetic theory of gases, statistic relationships, or quantum chemistry methods
may be needed, depending on the order of reactions and phase composition of the
reacting medium to estimate with practical accuracy values z that depend on both
the energy of interacting molecules and their orientation in space.

The usefulness of mechanical interpretations in the cases similar to that at issue is
revealed when different macroscopic variables and relationships are combined into
single closed models of complex physical-chemical systems. For example, in order
to qualitatively estimate the “impact” of thermodynamics on kinetics of chemical
processes, the Arrhenius equation, derived in terms of equilibria (mechanical and
thermodynamic), can be used to include activated complexes, given as individual
variables, in thermodynamic models of chemical systems.

Diffusion

Einstein established the main relationships for stationary diffusion at negligible
concentrations of a diffusing substance in terms of a thermodynamic equilibrium
between the forces affecting the moving flow. He did so in his classical works on
Brownian motion [40–42]. Einstein considered as forces the osmotic pressure (a
driving force) and the resistance force proportional to the velocity of particles. Here,
following the idea of Einstein’s proof, we show the diffusion equation derivation
using the notion of chemical potential, widely applied later in the book, instead of
the notion of osmotic pressure.
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Let us suppose that the driving force is a derivative of the chemical potential of
diffusing substance by the motion coordinate (l). Set off mentally a cross section
in the moving flow and denote by indices 1 and 2 the mole quantities of moving
particles (x) before and after the cross section. Then the change in the chemical
potentials associated with change in x will be found from the expression

μ

RT
=

[(
ln x1 + ln

(
P

σ

))
−

(
ln x2 + ln

(
P

σ

))]
x2 = x2 ln

x1

x2

(1.50)

In formulating equation (1.50) it was supposed that due to a small concentration
of the diffusing substance, σ on both sides of the set-off cross section would remain
the same. Now let us transform the expression in brackets in the right-hand side
of (1.50):

x2 ln
x1

x2

= x2 ln

(
1 + x

x2

)
≈ x2

x

x2

= x .

Hence,

μ = RT x . (1.51)

Passing from the final difference x to the differential dx we can write the
condition of the thermodynamic equilibrium,

−RT
dx

dl
= axw, (1.52)

where a is a coefficient of proportionality and w is a diffusion rate.
Einstein assumed the coefficient a to be equal to Nz (N being Avogadro’s number

and z, a particle’s resistance to motion) and determined z based on the assumption
that the diffusing particles have the form of a sphere with radius r that exceeds
essentially the radius of molecules in the solution (a carrier fluid). Under these
assumptions

z = 6πηr,

where η is a dynamic viscosity.
From (1.52) it follows that

xw = − RT

a

dx

dl
. (1.53)

The left hand-side of equation (1.53) represents the mole quantity of the sub-
stance that passes through the cross section perpendicular to the fluid’s motion
per second, i.e., a diffusion flow (J ), and the multiplier before the derivative in
the right-hand side equals the diffusion coefficient D. Hence, equation (1.53) is
equivalent to the known equation of the Fick molecular diffusion law,

J = D∇x . (1.54)
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Darcy–Weisbach Equation

The hydrodynamics equation that determines head losses due to friction at liquid
motion in pipes is the Darcy–Weisbach equation. It has the form:

h = λl
w2ρ

2d
, (1.55)

where λ is a hydraulic friction coefficient, d and l are diameter and length of the
pipe, w is an average velocity of the liquid motion, and ρ is density.

The equilibrium formulation of equation (1.55) is obvious. It reflects the equality
of a driving force (head) to a resistance force.

Hydraulic Shock in Pipelines

In the previous examples the description of motion was reduced to descriptions of
rest (equilibrium) as applied to the stationary processes. Now let us find from the
equilibrium equation the pressure amplitude in a non-stationary wave process that
occurs at fast valving off a pipeline along which the liquid moves. N. Zhukovsky
solved this problem by the equations of ideal liquid motion in 1898 [178]. The
assumption on the ideality is obvious since a very steep increase in the pressure
does not allow the friction forces to manifest themselves.

For a PVW (principle of virtual work)-based formulation of the problem, assume
additionally that during an infinitesimal period of time dτ , the shock wave resulting
from an instant braking of the flow propagates at a distance dl, where beyond the
wave front the radius of the pipe increases and its walls become deformed. Then
the Lagrange equilibrium equation can be written in the form

π (r + δr )2 Pdl − (ρ + δρ) π (r + δr )2 dl
dw

dτ
dl

−2π (r + δr ) dlPd (δr ) + λdϕ = 0 (1.56)

where P is maximum pressure in the pipeline, approximately taken to be equal
to pressure increment; r and δr are the pipe radius and its increase due to shock,
respectively; ρ and δρ are initial density of the liquid and its increase due to
compression, respectively; λ is a Lagrange multiplier, here interpreted as a stress
in the pipe wall caused by its deformation; and ϕ is deformation.

The first term on the left-hand side of equation (1.56) is an infinitesimal work of
the pressure force that acts on the liquid; the second term, the work of the inertial
force; the third, the pressure work related to a pipe radius increase; and the fourth,
the work of the forces that appear in the wall due to its deformation.

Assuming that: 1) the work of the wall resistance (the third term) and the work
of its deformation are negligibly small as compared to the first two terms in (1.56);
2) δr and δρ are also negligibly small; and 3) an absolute value of dw equals an ini-
tial velocity of the liquid flow, and taking into account the equality of the derivative
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dl

dτ
to the shock wave velocity c, we obtain a simpler form of equation (1.56):

Pdl − ρcwdl = 0. (1.57)

Thus, follows the Zhukovsky equation for the hydraulic shock

P = ρcw. (1.58)

Certainly, if we tried to formulate equation (1.58) having expressed the velocity
of the shock wave (sonic) c, as was done by Zhukovsky, in the form of a function
of the elastic properties of liquid and wall, we would not only fail to simplify
expression (1.56), but we would have to specify the expressions for deformation
of the walls and stresses in them. Thus, the initial equilibrium equation would be-
come “more thermodynamic” owing to the consideration for the forces of different
nature.

However, even at an abstraction level chosen for the hydraulic shock description,
i.e., at the assumption that the shock wave velocity equals the sonic velocity in a free
fluid, the presented example illustrates a pool of equilibrium model capabilities.
It shows that the models of “rest” appear to be efficient not only for analyses of
stationary processes but for the study of typical dynamics problems as well. If we
are interested in the results of a non-stationary process (for example, shock wave
amplitudes) rather than in the time of its duration, the equilibrium models (and
the relevance to extreme models) turn out to be rather convenient because of the
simplicity and clearness of their construction and interpretation. Additionally, we
note that when deriving (1.58) we implicitly use the assumption on the equilibrium
dynamics, i.e., on the equilibrium of each state in the non-stationary process.

Ohm’s Law

For direct current Ohm’s law is known to have the form

U = RI, (1.59)

where U is the voltage applied to an electric circuit section; R is resistance, which
depends on the conductor material, its geometry and temperature; and I is current.

Similar to the Darcy-Weisbach equation for liquid flow, equation (1.59) reflects
the equilibrium (equality) of the driving force (U ) and the resistance force (IR).
The linear dependence between I and U is explained by the linear dependence
between the friction force that acts on the charge carriers and their velocity, which
is directly proportional to the current.

Radiation

To estimate the energy of gas radiation, let us use the macroscopic thermodynamic
proof by Einstein as presented in one of his 1914 papers [38]. In this paper he
used a conditional model that reflects chemically homogeneous gas in the form
of a mixture of n different components, each characterized by its mole energy ε j .
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Following the idea of Einstein’s proof we use the notation of this book as applied
to the system maintained at a constant temperature and pressure.

When following the detailed balancing principle (Einstein used, but did not
introduce an appropriate term) for each reaction of formation (loss) of a component
with energy other than the low (zero) level, we can write the equality

G0
j + RT ln

x j

σ
= G0

0 + RT ln
x0

σ
, (1.60)

where lower index 0 refers to the component with zero energy level.
From (1.60) it follows that

x j = x0 exp

(
−G0

j − G0
0

RT

)
. (1.61)

Assuming that the entropies of all the components are equal (the fluctuations of
electrons in the atoms are reversible) we can pass from (1.61) to the Boltzmann
distribution equation

x j = x0 exp
(
− εi

RT

)
. (1.62)

Such an incidental macroscopic derivation of the Boltzmann distribution by
Einstein is rather curious; however, it also does not allow one to consider the
macroscopic substantiation of thermodynamics that is possible. Indeed, equa-
tions (1.60)–(1.62) include those quantities that can be determined only using
the statistic regularities.

Using equation (1.62) determining the value x j , Einstein wrote the expression
for an average energy of the conditional mixture components

ε =

∞∑
j=0

ε j x j

∞∑
j=0

x j

. (1.63)

Assuming that ε j can take only discreet values proportional to Nhν (h is a
Planck constant, ν is a frequency of radiation), we can pass from (1.63) to the
expression

ε =

∞∑
j=0

j Nhνx0e− jhν/kT

∞∑
j=0

x0e− jhν/kT

(1.64)

(in the exponent k = R

N
).

For further transformation of equation (1.64) we use the equation for a power
series expansion:
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The numeration is

Nhνx0e−hν/kT
(

1 + 2e−hν/kT + 3e−2hν/kT + · · ·
)

= Nhνx0ehν/kT(
ehν/kT − 1

)2
.

The denominator is

x0
(

1 + e−hν/kT + e−2hν/kT + · · ·
)

= x0ehν/kT(
ehν/kT − 1

) .

Thus we obtain the Planck equation for a monochromatic radiator (resonator),

ε = Nhν

ehν/kT − 1
. (1.65)

Taking into account that the ratio of the irradiated energy to the energy of a
radiator is proportional to ν2 (see, for example, [49]) and integrating by ν, we
write the expression

u =
∞∫

0

ahν3dν

ehν/kT − 1
. (1.65a)

Having substituted

x = hν

kT
,

we find

u = bT 4

∞∫
0

x3dx

ex − 1
= σ T 4.4 (1.65b)

This is the Stephan-Boltzmann equation for emissivity of an absolutely black
body.

Einstein evaluated the significance of the methodical approach to the deriva-
tion of ε, noting that it followed from an approach recognizing no principal
difference between physical and chemical phenomena. In his opinion this macro-
scopic thermodynamic approach was suitable for description of radioactive decay,
diamagnetism, Brownian motion, and other phenomena. These statements of
Einstein apparently may serve as a logical conclusion to this section illustrating
the “almightniness” of thermodynamics.

1.4. Partial Thermodynamic Equilibria

The analysis of mechanical and thermodynamic equilibria that was presented in
the previous section of the chapter supposed that there was but one equilibrium

4 For the method of finding the integrals (1.65b) see in [65].
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point in a system. However, as we stated in the Introduction, the capabilities of
thermodynamic analysis increase enormously in the transition from the search
for the only point of the complete (final) equilibrium to the study of the whole
thermodynamic attainability region, one that may include a continuous infinite
set of partial (by some parameters) equilibria. It is precisely when formulating
the principally new problems that cannot be solved with manual calculation and
traditional approaches that the greatest effect is achieved by the use of modern
computers. In this case we use not only their computational capabilities, but the
potentialities they offer in analyzing qualitatively complicated problems.

Let us consider the expediency of stating the problem of search for partial
equilibria in more detail. The traditional analysis of thermodynamic equilibria is
associated either with determination of extrema of the appropriate function or with
solution of the LMA equations. However, when studying the technological and
natural processes, normally we are not interested in the extreme values of entropy
or free energy but in the extreme concentrations of useful and harmful substances
formed in the course of a process. For example, when we compare different oil
refinery technologies it is important for us to know what maximum amount of light
hydrocarbons (petrol or kerosene) can be produced from a unit of the initial raw
material. When we study the environmental characteristics of the fuel combustion
processes, the variables we seek are extreme concentrations of nitrogen oxides,
sulfur oxides, carbon monoxide, benzpyrene, and other harmful substances. Such
compositions may correspond not to the point of final equilibrium, but to partial
equilibria that take place when the individual reactions slow down for some reasons
or do not run at all.

In Table 1.1 there are the examples of final equilibria calculations for several
processes of coal processing and methanol synthesis from the mixture of carbon
monoxide and hydrogen. They show that there are practically no target products
of these

Table 1.1 presents extreme concentrations of the indicated substances. These
are substances that can form in reactors as a result of a naturally run process or a
specially arranged process in with relations among the rates of separate interactions
are artificially changed (for example, in the use of catalysts).

Substance transformation in atmospheric pollution is perhaps the best example
of topicality of the problem of a search for partial equilibria as applied to the study
of natural phenomena. It is widely believed by specialists that thermodynamics
is principally irrelevant to atmospheric chemistry. Indeed, the traditional methods
of searching for final equilibria do not allow one to determine the results of the
atmospheric processes. For example, according to these methods, all living nature
in the oxidizing medium should turn mainly into carbon dioxide, water, and dilute
solution of the nitric acid [22]. This does not happen, however, the only reason
being the presence of extremely slow reactions under ambient conditions.

The concentrations of main atmospheric pollutants also turn out to be practically
equal to zero in the final equilibrium state. It is seen in Table 1.2 that actually
observable dangerous concentrations of these substances in the air correspond to
the intermediate partial equilibria.



P1: OTE/SPH P2: OTE

SVNY090-Gorban April 18, 2006 13:1

68 1. Principles of Equilibrium and Extremality in Mechanics and Thermodynamics

Table 1.1. The final thermodynamic equilibrium (eq) and extreme intermediate state

(ext) of fuel processing processes, mole/kg

Temperature of the process, K

500 800
Reaction mixture
composition eq Ext eq ext

A: Coal pyrolysis. Initial composition:

CH0.833O0.233N0.011S0.0016, P = 0.1 MPa; max C6H14

C6H14 0.0000 3.5430 0.0000 3.5430

Ck 51.4000 31.2800 51.4300 31.2800

CH4 6.7140 0.0000 4.3430 0.0000

CO 0.0002 0.0000 0.8437 0.0000

CO2 1.4120 6.8910 2.9130 6.8910

COS 0.0000 0.0936 0.0005 0.0936

H2 0.2301 0.0000 8.8180 0.0000

H2O 11.0500 0.0000 7.2050 0.0000

H2S 0.0936 0.0000 0.0931 0.0000

N2 0.3564 0.3570 0.3560 0.3570

NH3 0.0011 0.0000 0.0019 0.0000

B. Coal hydrogenation. Initial composition:

CH0.833O0.233N0.011S0.0016) + 0.66H2;

P = 15 MPa; max C6H14

C6H14 0.0000 8.4840 0.0000 8.4800

Ck 31.0300 0.0000 30.6000 0.0000

CH4 23.6600 0.0000 23.3500 0.0000

CO 0.0000 0.0000 0.0535 0.0000

CO2 0.4663 4.2560 1.1510 4.2800

COS 0.0000 0.0000 0.0001 0.0000

H2 0.0478 0.0000 2.0640 0.0000

H2O 11.9200 0.0009 10.5000 0.0297

H2S 0.0867 0.0000 0.0866 0.0000

N2 0.3268 0.3308 0.3205 0.3308

NH3 0.0079 0.0000 0.0205 0.0000

O2 0.0000 2.0860 0.0000 2.0460

SO2 0.0000 0.0867 0.0000 0.0867

C: Methanol synthesis. Initial mixture (in moles):

CO + 2H2; P = 2 MPa; max CH3OH

CH3OH 0.0000 29.3900 0.0000 14.6500

Ck 10.1000 0.5949 7.1830 4.0310

CH4 18.3200 1.0570 18.2800 9.4010

CO 0.0001 0.0000 0.3652 0.2439

CO2 2.7840 0.1628 5.3780 2.8840

H2 0.1306 0.0260 5.7640 3.7700

H2O 25.6400 1.4900 20.0900 10.5500
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Table 1.2. Equilibrium and extreme concentrations of some pollutants in the atmosphere

Substance State, mole/kg
Gibbs energy

Name Formula J/mole Initial Equilibrium Extreme∗

Benzpyrene C20 H12 245377 0.00 0.00 4.65·10−4

Peroxy acetyl nitrate CH3COONO3 −220359 0.00 0.00 3.98·10−3

Trichlor ethane C2 H3 Cl3 −240257 3.43·10−7 0.00 5.30·10−7

Hydrocarbons C2H4 −12922 1.70·10−9 0.00 —

CFC-12 CF2Cl2 −575676 1.72·10−8 0.00 1.03·10−7

CFCl3 −377308 1.72·10−7 0.00 2.06·10−7

Methane CH4 −130107 5.83·10−3 0.00 —

Carbon monoxide CO −169407 7.00·10−6 0.00 —

Carbon dioxide CO2 −457182 1.20·10−2 1.79·10−2 1.79·10−2

Carbonyl sulfide COS −210718 5.83·10−8 0.00 7.00·10−7

Chlorine Cl2 −66450 0.00 6.44·10−7 —

Hydrogen H2 −38905 1.92·10−5 0.00 —

Water vapor H2O −298051 1.04 1.05 1.05

Hydrogen peroxide H2O2 −205732 6.42·10−9 0.00 —

Sulfuric acid H2SO4 −821886 0.00 7.00·10−7 7.00·10−7

Hydrochloric acid HCl −147978 1.17·10−8 3.02·10−7 1.59·10−6

Hydrogen chloride HF −325045 0.00 2.06·10−7 —

Nitrous acid HNO2 −154133 7.70·10−13 1.17·10−12 7.9·10−2

Nitric acid HNO3 −213410 5.01·10−8 5.73·10−8 1.38·10−1

Hydroperoxyl HO2 −58563 2.30·10−12 0.00 —

Nitrogen N2 −57072 26.79 26.79 —

Nitrogen pentoxide N2O5 −92682 2.90·10−10 0.00 4.33·10−2

Nitrogen oxides NO 28487 5.90·10−12 6.17·10−15 6.55·10−2

NO2 −37345 4.19·10−9 4.27·10−9 1.18·10−1

Oxygen O2 −61110 7.19 7.18 —

Ozone O3 70613 1.39·10−6 0.00 —

Sulfur oxides SO2 −370743 6.42·10−7 0.00 7.00·10−7

SO3 −472315 0.00 2.17·10−14 —

∗ Extreme concentrations are calculated for different objective functions, i.e. belong to different states

of the system.

These examples show that expanding the application of thermodynamic analysis
and increasing its value as an informational tool is possible only if the analysis is
extended to the entire region of thermodynamic attainability of physical-chemical
systems and the partial equilibria making up this region.

The properties of partial equilibrium states are completely similar to those prop-
erties of the final equilibrium state (xeq). First of all, they correspond to the extrema
of some thermodynamic functions (determined by the conditions of the system in-
teraction with the environment). However, unlike the extremum that corresponds
to xeq these extrema are conditional, i.e., they take place if no physical-chemical
process can run after the system has attained a given partial equilibria. If such
processes turn out to be impossible in terms of thermodynamics and additional
prohibiting conditions become unnecessary, the considered equilibrium coincides
with xeq.
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For partial equilibria, as well as for xeq, the requirement is met as regarding
their attainability from the initial state of the system by the trajectory along which
the characteristic function (that takes the extreme value in the point xeq) mono-
tonically does not increase. Similar to xeq, the partial equilibria in accordance
with Boltzmann’s idea (see Section 1.2) can be found from a simple calculation of
probabilities without studying the actual course of the process in time. Hence, the
relations of classical equilibrium thermodynamics can also be used in the search
for these equilibria.

Note that when we solve practical problems, partial rather than final equilibria
are calculated; this is because the lists of reactions or substances we would normally
consider are never complete.

Dependence of the thermodynamic attainability regions of a chemical system,
i.e., sets of equilibria attainable from it’s the system’s initial state, on the condi-
tions of the processes run will be shown in the example taken from Equilibrium
Encircling.

In [58] consideration is given to the reacting system that consists of three iso-
mers: A1, A2 and A3. Since in isomerization reactions the number of species does
not change the law of mass conservation for this system can be written in the form

x1 + x2 + x3 = |y| = const, x j ≥ 0. (1.66)

The assumptions were made that each of the system components is an ideal gas
and in the state of final equilibrium their mole amounts are equal, i.e.,

xeq
1 = xeq

2 = xeq
3 . (1.67)

The algorithm for studying the equilibria attainable from the set y is illustrated by
Fig. 1.2, taken from [58] with some changes. Each triangle presented in the figure
is a material balance polyhedron that meets condition (1.66). The triangles are
equilateral, their heights are equal to |y| and sides to 2

√
3 |y|/3. The vertices are the

states in which the system contains only one component. The initial composition
is determined by the vector y = (0, 0, 1)T (vertexA3). Figure 1.2a shows the point
of equilibrium xeq, line

G = (
G0

j + RT ln(0.5P)
)

y (1.68)

(graphically constructed for T , P = const) and zones of thermodynamic unattain-
ability from vertex A3: A1ab and A2bc (shaded). The nonshaded part of the figure
represents the attainability region. Determination of the latter in this case is obvi-
ous since line (1.68) due to condition (1.67) touches the edges at their mid points
and these contact points are the points of minimum free Gibbs energy at edges.

The attainability regions in Figures 1.2 a–d are shown for four given mechanisms
of the process (depending on the catalysts chosen or some other effects on the
system):

a) A1 � A2 � A3;
b) A2 � A1 � A3;
c) A1 � A2 � A3 � A1;
d) A1 � A2, A1 � A3, A1 + A2 � 2A3
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a b

dc

a b
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x1 x3

x1 x3

x1 x2

x1 x2

x1 x2

x1 x2
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x1+x2

A1
A1

A3 A2

A3A2
A3

A1 A1

A2

Figure 1.2. A graphical interpretation of the algorithm of search for attainable states of a

thermodynamic system at a given mechanism of the process.

Let us consider construction of a set of possible equilibria for the mechanism
c. To determine the possible direction of the reaction near vertex A3set off two
sections (of a triangle): A3xeqa and A3xeqc on the polyhedron of constraints.
In the section A3xeqa, there can be reaction A3 → A1 until the equilibrium line
x1 = x3 is attained, and reaction A1 → A2 until the equilibrium line x1 = x2 is
attained. In the section A3xeqc there can be the following chemical transformations:
A3 → A2 (the limiting linex2 = x3), and A2 → A1 (the limiting linex1 = x2).
After the transition from A3 to one of the states on the section axeq, we arrive at
sectionA1xeqa, where processes A3 → A2 and A1 → A3 may take place. Possible
directions of transformations in each of the sections are indicated in Fig. 1.2 with
arrows. On attainment of the section dxeq, as a result of transformation on the
set of compositions A1xeqa, we appear in section A1xeqb, where there can be
a motion to the equilibria x1 = x2. This line will also be attained at subsequent
transitions from A3xeqc to A2xeqc, and from A2xeqc to A2xeqb. Thus, the whole
set of equilibria A3adecA3 that are attainable from A3 is determined for the case of
process mechanism c. Similarly the accessible sets are determined at mechanisms
a, b and d . It is clear that in all the cases these sets turn out to be smaller than the
full attainability region A3abc that is observed when there are no constraints on
the mechanism of reactions.



P1: OTE/SPH P2: OTE

SVNY090-Gorban April 18, 2006 13:1

72 1. Principles of Equilibrium and Extremality in Mechanics and Thermodynamics

Some time after the above work was done, a similar algorithm of search for the
attainable equilibria was considered in the papers by R. Shinnar et al. [154, 155].

The possibility of finding the thermodynamic attainability regions suggests an-
other tempting area of inquiry: the problem of determining in these regions the
points that correspond to extreme concentrations of harmful or useful substances
of interest to a researcher. An analysis of this problem—one that goes beyond the
traditional methods of equilibrium thermodynamics—is the subject of the study
presented next.

1.5. A Thermodynamic Analysis of the
Chemical Kinetics Equations

The main content of this book is reduced to a direct application of equilibrium (ther-
modynamics) models for the analysis of various natural and technological systems.
However, thermodynamics can also be used to interpret and transform the motion
equations. When so used, it allows reserchers a deeper understanding of motion
equations and an easier solution to them. Such a thermodynamic method—studying
the kinetics of chemical reactions—unfolds in the book Equilibrium Encircling.

Equilibrium Encircling contains a brief comparative analysis of formalisms
of kinetics and thermodynamics, it reveals the interrelations between these for-
malisms; and it offers the conditions of coordinating the kinetic and thermody-
namic models. The possibility of simplifying the motion equations (excluding
“fast” variables, use of local potentials) is based on the thermodynamic principle
of entropy maximum. The applicability of the principle of detailed balancing in
macroscopic kinetics under condition of microreversibility has been substantiated;
the idea of analyzing the direct problems of kinetics when incomplete information
is only available, basing the analysis on thermodynamic principles, has been put
forward. The method of balance polyhedron transformation into a one-dimensional
continuum, i.e., a thermodynamic tree, has been suggested. The method makes it
possible to determine the substance compositions attained in the course of a chem-
ical process. The technique has been developed to determine a multitude of steady
states in open systems.

The geometrical technique of constructing thermodynamic trees used in the
Equilibrium Encircling can be applied in thermodynamic modeling. It is discussed
in Sections 3.2 and 4.4. This section presents briefly the contents of the second,
third and sixth chapters of the book by A.N. Gorban [58], which are devoted
to coordinating kinetics with thermodynamics, and to applying thermodynamic
principles to the analysis and solution of the kinetic equations. Understanding the
contents of these chapters is necessary if the reader is to correctly construct and
use the thermodynamic models discussed below.

Assumptions, Notions, and Nomenclature Used

Except for a few exceptions, Equilibrium Encircling addresses the ideal systems
whose kinetics follow the law of mass action. Complex reactions in these systems
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represent an aggregate of simple (elementary) ones. Each elementary reaction is
set by its stoichiometric equation

α1 A1 + α2 A2 + · · · + αn An � β1 A1 + β2 A2 + · · · + βn An, (1.69)

where A j are symbols of the substances; α j , β j are stoichiometric coefficients–
integers that show how many molecules of A j are involved in one act of the
elementary reaction as an initial reagent (α j ) and as a product (β j ). Both forward
and reverse reactions are written in (1.69). For the reverse reaction β j is the number
of molecules A j taking part in one act of reaction as an initial reagent; α j is the
number of molecules A j that are produced in one act of the reaction as a product.

Each elementary process r is assigned to its stoichiometric vector γr with com-
ponents γr j = βr j − αr j . Additionally, the elementary process is characterized by
an extensive quantity Vr ≥ 0 (i.e., the volume of the process), and the intensive
quantity wr ≥ 0, the process rate. The value V that characterizes the size of the
region in which the process takes place is called a volume conventionally. In spe-
cific cases Vr can be a volume, a surface area, or the number of active centers of
catalysts.

The rates of the forward (w+) and reverse (w−) reactions based on the LMA
are determined from the equations

w+ = k+(T )
n∏

j=1

c
α j

j , w− = k−(T )
n∏

j=1

c
β j

j , (1.70)

where c j is a concentration of the j th substance, and k± are the rate constants.
The rate of the stage (the reverse elementary reaction (1.69)) is

ws = w+
s − w−

s . (1.71)

The thermodynamic ideality of the considered system is determined by the form
of the expression for the chemical potential,

μ j = μ0
j + RT ln c j . (1.72)

Note, that in equations (1.70) and (1.72) and below in this section, unlike in the
rest of the book, along with the main variable (x), concentration c j is the mole
quantity of the j th component. Specifically, c j is the number of species (moles)
of the j th component in a unit of V . This is to preserve the form of analytical
relationships used in the Equilibrium Encircling. Following the rigor (found ib that
book), for the antilog in (1.72), instead of c j we are right to use the dimensionless

ratio
c j

c0
j

, where c0
j is a concentration of the j th component in a standard state that

is taken to be equal to unity. In this case, the correspondence of equation (1.72)
to equations (1.29) and (1.30) becomes clear. In those equations the antilogs are
the ratios of partial pressures to the ideal gas’ standard pressure, considered to be
equal to unity.
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The Schemes of Formal Thermodynamics and Kinetics

Before discussing the problems of coordinating the motion models with equilib-
rium models let us briefly consider the models themselves, i.e., formal descriptions
of thermodynamics and kinetics.

Suppose that the subject of a study is isolated systems. The study of the non-
isolated system with equilibrium environment is reduceable to the analysis of a
minimum isolated system, including the given one. The thermodynamic descrip-
tion of the system, if specified, comprises the followings: the list of macroscopic
variables, a system of balance equations, a system of balance inequalities, and
entropy as a function of macroscopic variables.

Denote the macroscopic variables as M j ( j = 1, . . . , n), and the vector with
components M j as M . The values of variables M j completely determine the sys-
tem’s states. The choice of the main macroscopic variables for a specific system is
far from a trivial problem, but if the choice is made correctly we can consider any
macroscopic quantity a function of M . Let us identify vector M and a system’s
state.

Balance equations can be homogeneous:∑
i

ag
i j M j = 0, ag M = 0, (1.73)

or nonhomogeneous:∑
i

ai j M j = bi = const, aM = b = const. (1.74)

The balance of electric charges (the electric neutrality equation) can exemplify
equations of the first type. Presence of the relationships of type (1.73) means that
the variables M j are not independent. Examples of equations of the second group
are balances of mass, energy, surface, etc. The values of the right-hand sides of
(1.74) in the isolated system do not change with time. If it is possible to pass from
M1 to M2, then aM1 = b = aM2.

As a rule, besides balance equations, there are balance inequalities; for example,
conditions of nonnegativity of variables (concentrations, volumes, etc.) expressed
in general use:

M ≥ 0. (1.75)

Recall that the inequality x ≥ 0 for the vector x implies x j ≥ 0 for all coordinates x .
The system of balance equations (1.73) and (1.74), and balance inequalities

(1.75) define a convex set in Euclidean space Rn , which is a balance polyhedron D.
Entropy S is a homogeneous function of the first order of macroscopic variables

M j : S(k M) = kS(M) for any k larger than zero. It reaches maximum in the do-
main D and is twice continuously differentiable. Equilibrium is the point of global
maximum of S in a balance polyhedron. It is supposed to be an interior point of D.
The metastable state represents a local maximum of S in D. Often, but not always,
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the condition of concavity [72] is met:

xT

[
∂2S

∂ Mi∂ M j

]
x ≤ 0, x ∈ Rn, ax = 0, x �= 0, S(M) > −∞. (1.76)

The condition ax = 0 means that x belongs to the balance plane that passes through

zero. In D the conjugate variables μ j (M) = −∂S(M)

∂ M j
are determined. In the

equilibrium point

μ j
(
Meq

) =
∑

i

λi ai j , (1.77)

where λi are the uncertain Lagrange multipliers. One of the explanations of
expression (1.77) consists in the fact that the scalar product M, μ (Meq) =∑

j
M j , μ j (Meq) is constant on any balance polyhedron.

There can be different options of the assumed entropy properties – both stronger
and weaker than those presented – but all the equilibrium thermodynamics versions
suppose observance of its second law: Entropy does not decrease at spontaneous
changes in the isolated system. The notion of a thermodynamically admissible
path serves to formalize of this law.

As was mentioned in the Introduction, the function M = ϕ(τ ), τ ∈ [0, 1], is
called a thermodynamically admissible path if the following four conditions are
met:

1.
∑

j
ag

i jϕ j (τ ) = 0, agϕ(τ ) = 0, for any τ ∈ [0, 1].

2.
∑

j
ai jϕ j (τ ) = const, aϕ(τ1) = aϕ(τ2), for any τ1, τ2 ∈ [0, 1].

3.
∑

j
ϕ j (τ ) ≥ 0, ϕ(τ ) ≥ 0, for any τ ∈ [0, 1],

4. The function S (ϕ(τ )) on the section τ ∈ [0, 1] is nonincreasing.

Let us define thermodynamic preorder and thermodynamic equivalence. M1 ≥
M2 if there is the thermodynamically admissible path ϕ(τ ) that ϕ(0) = M1,
ϕ(2) = M2. M1 ≈ M2 if M1 ≥ M2, and M2 ≥ M1. The comparable states M1

and M2 always belong to one balance polyhedron. The thermodynamically equiv-
alent states are identified in D by the graph referred to in Equilibrium Encircling
as a thermodynamic tree or an entropy tree.

The quantities used in thermodynamics are divided into categories of extensive
and intensive. All extensive quantities (like system entropy) are homogeneous
functions of the first power. The intensive values have zero power of homogeneity.
For the latter f (k M) = f (M) at any k > 0. The extensive quantities include S, U ,
H , G, F , V , x , and the intensive ones include T , P , density ρ, specific volume v,
derivatives of thermodynamic functions with respect to M j .

The following property of homogeneous functions is often used in thermody-
namics. Let f (M) be a homogeneous function of power λ: f (k M) = kλ f (M) for
k > 0. We calculate by two methods the derivative with respect to the function
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f (k M) at k = 1: (
d f (k M)

dk

)
k=1

=
∑

j

M j
∂ f (M)

∂ M j
,

and, going the other way, using homogeneity, we obtain(
d f (k M)

dk

)
k=1

=
(

dkλ

dk

)
k=1

f (M) = λ f (M).

Finally, for the homogeneous function of the power λ, we obtain the Euler
equation ∑

j

M j
∂ f (M)

∂ M j
= λ f (M) (1.78)

In particular, for extensive f ,∑
j

M j
∂ f (M)

∂ M j
= f (M), (1.79)

and for intensive f , ∑
j

M j
∂ f (M)

∂ M j
= 0. (1.80)

It is supposed that in additive thermodynamic systems that have

S(M) =
∑

k

Sk(Mk), (1.81)

the entropies of parts Sk meet the same conditions as S of the system. Namely,
they have a point of maximum, they are differentiable, and so on. For each fixed
state of one part, the balance equations and inequalities of the system (1.73)–
(1.75) turn into balance equations and inequalities of the other parts. For example,
if we suppose that the state of one part is given, we can determine the balance
polyhedrons and equilibria of the others.

Parts of additive systems can be supposed noninteracting though this is not an
absolutely correct supposition. Energy and entropy of an interaction are considered
negligibly small as compared to energy and entropy of the parts, but admissible
are the flows of substance, energy, and other extensive variables from one part
to another, as long as this is not prohibited by the balance relationships. Due to
these flows, the point M1eq + M2eq is not always the equilibrium of the system
that consists of two parts. To describe this feature, we can use the phrase: “parts
interacting through flows.”

In isolated systems those states that take place somewhere besides along the
thermodynamically admissible path can also be achieved. These are, for instance,
the metastable states that result from fluctuations. However, here we consider the
dynamics of the processes that take place by the continuous paths. Far from the
points of phase transitions, such a constraint is quite justified.
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Now let us pass to the description of kinetics. Consider that, formally, the ki-
netic description of a system, if given, is specified as: the list of macroscopic
variables, the system of balance equations and inequalities, the mechanism of
transformations—the list of elementary processes and the rate functions of the
elementary processes. In the same manner as in the thermodynamic description
it is supposed that the values of macroscopic variables M j determine the state
of the system. The balance equations and inequalities in the kinetic description
completely coincide with (1.73)–(1.75) in the thermodynamic model.

From here the differences start. A fixed basis should be chosen in the space of
vectors M . Each vector of the basis e j is correlated to the symbol A j . M j is the
j th coordinate in this basis.

The mechanism is the list of elementary processes each set by its stoichiometric
equation of the form (1.69), the r th elementary process is assigned its stoichio-
metric vector γr with components γr j = βr j − αr j , the process volume Vr and the
rate wr .

The kinetic equations have the form

d M

dτ
=

∑
r

γr Vrwr , (1.82)

where τ is time.
It is supposed that the following conditions of balance conservation are met:∑

j

ag
i jγr j = 0, agγr = 0, for any r ; (1.83)

∑
j

ai jγr j = 0, aγr = 0, for any r ; (1.84)

if ∑
j

M j ≥ 0, for any r Vrwr

∑
j

γr j ≥ 0. (1.85)

Equations (1.83), (1.84) and inequalities (1.85) mean that for each elementary
process the balance equations and inequalities are true. According to (1.83) and
(1.84) the directions of vectors γr pass through zero. It is supposed that wr (M) are
continuously differentiable in the whole domain of definition.

Coordination Between Kinetics and Thermodynamics

Let the macroscopic variables, balance equations and inequalities be set, entropy
S(M) be found, and the kinetic equations (1.82) be constructed. Let us consider
that the kinetic description is coordinated with thermodynamics if the domain
of definition S and w coincide and entropy S (M(τ )) does not decrease on the
solutions to the kinetic equations M(τ ).

To determine the conditions of coordination, obviously it is necessary to trans-
form the right-hand sides of equations (1.82), for the variableswr entering into them
were presented in the form of the functions of some thermodynamic quantities.
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The transformation is possible owing to the autonomy (independence from τ of
the right-hand sides) of the system (1.82)).

Supposing that concentrations c j are macroscopic variables, we can use for the
transformations the equation (1.72), from which we will find, that

c j = const · exp
( μ j

RT

)
. (1.86)

From μ j it is convenient to pass to the dimensionless pseudopotentials

m j = μ j

RT
= −R−1 ∂S

∂c j
. (1.87)

Based on (1.87) and the LMA equation (1.70), the expression for the elementary
process rate (1.69) can be presented in the form

wr = ϕr exp

(∑
j

αr j m j

)
. (1.88)

Having illustrated the method of transforming the rate equation with the example
of the variable c, we return to the common symbol of macroscopic variables M .

Now we check if the function G = ∫
md M is a Lyapunov function of the system

(1.82). For certainty let us write the conditions of G decreasing along the solutions.
The derivative of G with respect to time, due to (1.82), is

Ġ =
∑

r

Vrϕr

∑
j

m jγr j exp

(∑
j

αr j m j

)
. (1.89)

Let us represent G as a derivative of the auxiliary function of one variable λ.
For the fixed state, we assume

θ (λ) =
∑

r

Vrϕr exp

(∑
j

(
λαr j + (1 − λ)βr j

)
m j

)
. (1.90)

Then Ġ = −θ ′(1). We can try to interpret θ (λ) in the following way: For each λ ∈
[0, 1] consider the system of stoichiometric equations obtained by “combining”
forward and reverse processes. These would be:

αr j (λ) = λαr j + (1 − λ)βr j , βr j (λ) = λβr j + (1 − λ)αr j . (1.91)

Keeping the values Vr and ϕr , we substitute on the right-hand side of (1.90) the
rate wr (λ) as calculated by equation (1.88), but we would replace αr j by αr j (λ) in
(1.91) in the final equation:

θ (λ) =
∑

r

Vrwr (λ). (1.92)

In particular, θ (1) = ∑
r

Vrwr .

If for any state from the domain of definition w the inequality θ ′(λ) ≥ 0 is true,
the function G (M(τ )) is nonincreasing on the solutions of kinetic equations (1.82)
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and has the properties of the Lyapunov function. The reverse is also true, since
Ġ = θ ′(1).

Now note that θ ′′(λ) > 0 everywhere; therefore, to satisfy the inequality
θ ′(λ) ≥ 0, it is sufficient to have such λ < 1 so, that θ (λ) ≤ θ (1).

Production of entropy, a derivative of S due to the system (1.82) is

Ṡ = Rθ ′(1),

and the condition of coordination can be written as follows: θ ′(λ) ≥ 0 for any state
from the domain of definition S.

We formulate several sufficient conditions for coordinating kinetics and ther-
modynamics. If for any state the inequality θ (1) ≥ θ (0) is satisfied, i.e.,

∑
r

Vrϕr exp

(∑
j

αr j m j

)
≥

∑
r

Vrϕr exp

(∑
j

βr j m j

)
, (1.93)

then θ ′(λ) ≥ 0. In particular if for any state θ (1) = θ (0), i.e.,

∑
r

Vrϕr exp

(∑
j

αr j m j

)
=

∑
r

Vrϕr exp

(∑
j

βr j m j

)
, (1.94)

then θ ′(λ) ≥ 0. Expression (1.93) is an inequality of coordination and (1.94) is a
condition of balance.

Let us interpret the expressions (1.93) and (1.94). Compare with each system
of elementary processes the reverse process; that is:

α′
r j = βr j , β ′

r j = αr j , V ′
r = Vr , ϕ′

r = ϕr ,

and

wr = ϕr exp

(∑
j

αr j m j

)
.

The primed variables relate to the reverse system. The inequality of coordination
means that the sum of flows for the reverse system does not exceed in each state
the sum of flows for the initial system:∑

r

Vrwr ≥
∑

r

V ′
r w

′
r . (1.95)

The condition of balance consists in the fact that these sums of flows are equal.
It is true for the equilibrium points: complete and partial (at supposition that at
attainment of the latter all the processes in the system cease).

The presented conditions of coordination and balance show clearly the conve-
nience of using dimensionless pseudopotentials:

m j = −R−1 ∂S

∂ M j
= μ j

RT
(1.96)

(as compared with (1.87) the symbol c here is replaced by the common symbol
of macroscopic variables M). Here in the case of measuring M in moles the
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thermodynamic Lyapunov function G is also measured in moles and this function
can be directly applied to check the conditions of coordination between the kinetics
and thermodynamics (see the equations (1.82), (1.89), (1.93), and (1.94)).

Emphasize that neither inequality of coordination nor the condition of balance
are necessary for the entropy monotonical change with time. They are sufficient.
The necessary and sufficient is only the inequality θ ′(λ) ≥ 0.

The mechanism of transformations is called reversible if each elementary pro-
cess in it has a reverse one: for each r there exists such p that αr j = βpj , βr j = αpj .
In the reversible mechanisms the inverse processes are combined, by writing

αs1 A1 + · · · + αsn An � βs1 A1 + · · · + βsn An. (1.97)

A couple of processes (1.97) is called a stage. Let V +
s , w+

s be a volume and
rate of the forward process and V −

s , w−
s —those of the reverse one. Then kinetic

equations for the reversible mechanism can be rewritten in the form

Ṁ =
∑

s

γs
(
V +

s w+
s − V −

s w−
s

)
, (1.98)

where s is the number of stage, γs is a stoichiometric vector of stage that coincides
with stoichiometric vector of the forward process: γs j = βs j − αs j ; V +

s normally
equals to V −

s . Note that any mechanism can be written as a reversible one if several
elementary processes with a zero rate are added to it.

The contribution of the s th stage to the entropy production is

− (
μ, γ s

)
Vs

(
w+

s − w−
s

) = −Vs

∑
j

γs jμ j
(
w+

s − w−
s

)
. (1.99)

If the contribution of each stage to the entropy production is nonnegative, ki-
netics is coordinated with thermodynamics stage-by-stage. Note that presence of
magnetic fields violates the microreversibility and stage-by-stage coordination
[125]. In this case we have to return to the balance condition (1.94) or inequality
of coordination (1.93), in which all the elementary processes take place simulta-
neously.

The condition of stage-by-stage coordination (detailed balancing principle) con-
sists in the fact that (

μ, γ s

)
ws ≤ 0 (1.100)

for all stages s. A sufficient condition for (1.100) is the possibility of presenting
ws in the form

ws = ϕs

(
exp

(∑
j

αs j m j

)
− exp

(∑
j

βs j m j

))
, (1.101)

where ϕs ≥ 0. The value ϕs is called a kinetic multiplier of the stage and the
difference of exponents in brackets (1.101) is called a thermodynamic function of
rate or the function of Marcelin-De Donder.
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The kinetic law (1.101) allows a new definition of w+
s and w−

s :

w+
s = ϕs exp

(∑
j

αs j m j

)
; w−

s = ϕs exp

(∑
j

βs j m j

)
. (1.102)

It should be emphasized the neither the inequality of coordination (1.93) nor the
condition of balancing (1.94), nor the representation of ws in the form of the ther-
modynamic function (1.101), nor, finally, the division of ws into w+

s and w−
s (1.102)

are not invariant, even with respect to a simple transformation, that maintains a
set of thermodynamically admissible paths: S′ = λS (λ ≥ 0). At such a transfor-
mation m ′

j = λm j . The conditions of coordination θ ′(λ) ≥ 0 and the condition of
stage-by-stage coordination (1.100) are invariant to it.

Let us call the vector of pseudopotentials μp thermodynamically admissible if
for any stoichiometric vector γs ,

sign
(
μp, γs

) = sign (μ, γs) . (1.103)

The vector of pseudopotentials μp is thermodynamically admissible if it can be
presented in the form

μp = f μ + χ, (1.104)

where f > 0 is a positive scalar intensive quantity ( f (λM) = f (M) at λ > 0),
and χ is a vector of intensive quantity, i.e., it is orthogonal to all γs : (γs, χ ) ≡
0. Representation of (1.104) is sufficient and, at some additional conditions of
nondegeneracy, is also a necessary condition of the thermodynamic admissibility
of μp.

The physical sense of the orthogonality conditions of the vectors γs and χ , i.e.,
satisfaction of the identity (γs, χ ) ≡ 0 can be explained by the equality∑

j

μ j dc j = 0. (1.105)

which is satisfied at the equilibrium point of the thermodynamic system.
It is obvious that the orthogonality of potentials and stoikhiometric vectors

follows from the orthogonality of potentials and concentrations.
The stage-by-stage coordination (1.100) will be satisfied if at any s

ws = ϕs

(
exp

(∑
j

αs jμ
p
j

)
− exp

(∑
j

βs jμ
p
j

))
(1.106)

for the thermodynamically admissible vector of pseudopotentials μp. The thermo-
dynamic admissibility μp is observed, for example, at monotonic nondegenerate

substitution of entropy: S′ = F(S),
d F

d S
> 0.

The general formal scheme for coordination of kinetics and thermodynamics as
illustrated in Equilibrium Encircling, gives examples of: chemical reactions in the
homogeneous isolated system; interaction with an inertia-free mechanical system;
contact with a thermal reservoir; simultaneous interaction with a thermal reservoir;
and a mechanical system. Consideration is given to four classical conditions of
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chemical kinetics. They are: U , V = const; T , V = const; H , P = const and T ,
P = const. A detailed analysis of the main model system of thermodynamics and
kinetics, i.e., of ideal gas, is also presented in cited book.

Note the representation of the Fourier heat conduction equation

q = λ (T − TT ) (1.107)

is, in form, similar to the equation of the chemical reaction rate (1.101):

wt = ϕt

(
exp

(
− E

RT

)
− exp

(
− E

RTT

))
, (1.108)

which was given in Equilibrium Encircling and is very interesting as regards the
subject of this book.

In (1.107) and (1.108) q is a density of heat flow; λ is a coefficient of heat
conductivity; T and TT are temperatures of the system and the reservoir exchanging
heat with the system, respectively;wt is the rate of the heat exchange stage replacing
q in the chemical-kinetic interpretation; ϕt is some intensive quantity; E is a
constant that has dimension energy/mole.

To be certain in the equivalency of the equations (1.107) and (1.108) it is suf-

ficient to divide e− E
RT − e− E

RTT into T − TT , assuming with regard to continuity
that, at T = TT , the quotient equals E

RT 2 e− E
RT . This quotient is positive at T > 0,

TT > 0 and, hence, transition from (1.08) to (1.107) implies multiplying ϕt by
the positive function of temperatures T , TT . The stoichiometric vector of the heat
exchange stage

E As → E AT (1.109)

(indices s and T refer to the system and reservoir, respectively) has two nonzero
components: γs = −E , γT = E . The kinetics equations for the interconnected
system interacting with an infinite reservoir can be written in the form

ẋ = V
∑

s

γsϕs (x, U, V ) exp

(∑
j

αs j m j (x, U, V )

)
,

(
U̇
U̇T

)
= Vs

(−E
E

)
ϕs

(
exp

(
− E

RT

)
− exp

(
− E

RTT

))
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.110)

where x is a vector of mole quantities of reagents, U is an internal energy of the
system, and Vs is a “volume” of the contact area of the system and reservoir.

The balance equations and inequalities for (1.110) are:

a) U + UT = const; b) V = const ≥ 0;

c) VT = const ≥ 0; d)
∑

j
ai j x j = const; e)x j ≥ 0.

⎫⎬
⎭ (1.111)
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The thermodynamic Lyapunov function G(x, U, UT , V, VT ) is constructed

again as − S�

R
, where S� is an entropy of the interconnected system, i.e.,

G(x, U, UT , V, VT ) = − S(x, U, V ) + ST (UT , VT )

R
. (1.112)

Its derivative by virtue of the system of equations (1.110) is non-positive, if
kinetics is coordinated with thermodynamics.

Thermodynamics and Composing Kinetic Equations

The third chapter of Equilibrium Encircling shows how the conditions of coordi-
nating kinetics and thermodynamics can be used for transformation and solution of
kinetic equations. The most popular method of studying the dynamics of somewhat
complex objects is to divide the motions into fast and slow ones with subsequent
exclusion of the fast ones. As a result we obtain the system of equations that
describe the evolution of slow variables.

The basis for the analysis stated in [58] is the assumption that, if the choice
of macroscopic variables was made correctly, the system relaxes fast; by this we
mean that distribution of probabilities of microscopic variables, as a small period
of time passes, is determined to a high accuracy by the values of macroscopic
variables. The Markov ergodic circuits (processes) with finite number of states
make up the model of a microdescription.

The description is reduced by the Lyapunov functions, done so on the basis of
the principle of a conditional maximum of entropy at given values of the macro-
scopic variables. Here we use the Legendre transformation of the thermodynamic
Lyapunov function H (x) in a new function:

G(μ) = (μ, x(μ)) − H (x(μ)) =
∑

j

μ j x j (μ) − H (x(μ)) , (1.113)

which is applied in mechanics and thermodynamics, where

μ = ∇x H, μ j = ∂ H

∂x j
, (1.114)

∂G

∂μ j
= x j +

∑
i

μi∂xi

∂μ j
−

∑
i

∂ H

∂xi

∂xi

∂μ j
= x j . (1.115)

Using the conjugate coordinates x and μ we can write the necessary conditions
of extremum in the problems with linear constraints

H (x) → min,∑
j

li j x j = Mi , i = 1, . . . , m, x j ≥ 0 (1.116)

where x is a complete vector of variables, Mis a vector of slow variables, M ⊂ x .
Applying the method of Lagrange multipliers we obtain the system of equations
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that expresses the necessary conditions for (1.116):

μ j =
∑

i

λi li j , j = 1, . . . , n,
∑

j

li j x j = Mi , i = 1, . . . , m, (1.117)

where λi are uncertain multipliers. As is seen the necessary conditions of extremum
are expressed by the system of equations, one part of which is linear in coordinates
x and the other in conjugate coordinates μ.

Now, we pass from the function H (x) to the function of slow variables H (M).
Let the Legendre transformation G(μ) be given, the transformation x → μ have
a smooth reverse transformation, i.e., equation (1.115) is satisfied and it is known
that for some open set of values of the vector M = (M1, . . . , Mm) the problem
(1.116) has only one solution, and the point of minimum xmin and, hence, H min

smoothly depend on M , i.e., H min = H (M). Denote μM j = ∂ H (M)

∂ M j
. μM is a

vector with coordinates μM j . We find out what information on the function H (M)
can be obtained based on H (x), G(x), and without solving any equations. Based on
the value of the vector μM find vector μ in the appropriate point of the conditional
minimum

μ j =
∑

i

μMi li j . (1.118)

Thus, obtain

x (μM ) = (∇μ G(μ)
)
μ j =

∑
j

μM j li j
. (1.119)

Using the given x (μM ) determine M (μM ) and H (M (μM )):

Mi (μM ) =
∑

j

li j x j (μM ), H (M (μM )) = H (x (μM )) . (1.120)

Finally we find the Legendre transformation of the function H (M) and label it by
G (μM ):

G (μM ) = (μM , M (μM )) − H (M (μM )) = G (μ (μM )) . (1.121)

Thus, without solving any equations, based on the functions H (x) and G(x), we
determine the dependences μ (μM ), x (μM ), M (μM ), H (M (μM )), and G (μM ).
Note that at the assumptions made the reversibility of the transformation M → μM

follows from the reversibility of the transformation x → μ. Moreover, the function
M (μM ) is constructed in an explicit form. Convexity of H (M) follows from
convexity of H (x).

We pass to the problem of excluding “fast” variables. Let an autonomous system
of differential equations

ẋ = F(x) (1.122)

be set with smooth right-hand sides. A balance polyhedron is given by the equations
and inequalities (1.116).



P1: OTE/SPH P2: OTE

SVNY090-Gorban April 18, 2006 13:1

1.5. A Thermodynamic Analysis of the Chemical Kinetics Equations 85

Suppose that in the region of initial conditions x0, the solutions x(τ ) to (1.122)
behave in the following manner: Vector x(τ ) approaches the value determined by
the values of slow variables M ; after that, x can be determined accurately to be a
function M and the function itself the same for all initial conditions.

Thus, for each value of M there is x = xeq(M) such that, if M
(
x0

) = M0, then
x(τ ) appears fast in a small neighborhood of xeq(M0), and eventually gets close
to xeq(M).

Normally, rigorous substantiation of the assumptions made in situations of real
complexity fails, and this fact is probably the weakest point in the method of
excluding fast variables suggested in [58]. This method’s initial assumptions are
related to the assurance that the change in macroscopic variables can be described
by the system of autonomous differential equations of the first order. If the change
cannot be described thus, then a list of macroscopic variables should probably be
added, based on the physical features of the described process.

If the function xeq(M) is known, we can write

Ṁ = l F
(
xeq(M)

)
, Ṁ j =

∑
i

li j Fi
(
xeq(M)

)
. (1.123)

Generally speaking this equation can be used only on limited intervals of time. On
the right-hand side of (1.123), l F (xeq(M)) still does not accurately coincide with
l F (x(τ )). This inaccuracy may lead to an accumulation of errors in computations
and, as a result, to a great discrepancy between the solution of (1.123) and the
true value of M (x(τ )) over a rather long computation time. The exception occurs
in the case where, according to (1.123), M(τ ) strives to the only stable, fixed
point as τ → ∞. If the solution to (1.123) and the true values of M (x(τ )) do
not diverge much in the time during which the solution to (1.123) enters a small
neighborhood of the fixed point, equations (1.123) can be used as τ → ∞ as
well.

The function xeq(M) for a separate system cannot be constructed uniquely,
however, the arbitrariness is small in the same sense as the neighborhood of
xeq (M (x(τ ))) is small where, after some short time interval, the motion occurs.

If the Lyapunov function H (x) that decreases along trajectories (solutions) is
known for the system (1.122), we can try to construct the dependence xeq(M) as
a solution to the problem

H (x) → min, lx = M .

This way seems natural but the function H may appear to be very sensitive to the
changes in the slow variables and to be not very sensitive to the changes in the
fast variables. In this case the construction of xeq(M) as a point of the conditional
minimum H will not necessarily lead to the desirable result. In applications, the
system (1.122) normally depends on a number of parameters. It seems most sen-
sible to use a Lyapunov function that does not depend on them, if one exists. This
is particularly important in the case where, among the parameters, there are pa-
rameters whose value determines the possibility of dividing the variables into fast
and slow ones.
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Thus, when excluding fast variables, we will suppose that the problem (1.116)
has the only solution; the minimum point xeq(M) and the function H (M)
smoothly depend on M . Given the value μM = ∇M H (M), we can find μ (μM )
and x (μ (μM )) (see (1.119)–(1.121)). As a result, we obtain

Ṁ = l F
(
∇μG (μ)

∣∣
μ=μM l

)
, (1.124)

where μMl is the product of the vector of line μM by matrix l:

(μMl)i =
∑

j

μM j li j ;

∇μ G is a vector with components ∂G
μi

, the derivatives are taken at the point
μ = μMl.

The right-hand sides of equations (1.124) are defined as functions of μM . To set
them as functions of M , we have to make the Legendre transformation, find the
function H (M) through G (μM ) in (1.121) and, thus,

μM (M) = ∇M H (M).

It is impossible to make this in an explicit form for such a general case. Setting the
right-hand sides of kinetic equations as functions of conjugate variables seems a
natural and a very convenient method (see, for example, the kinetic law (1.101)).
If, originally, the right-hand sides of (1.122) are defined as functions of μ, that is,

ẋ = �(μ),

then equations (1.124) acquire a particularly simple form:

Ṁ = l� (μMl) . (1.125)

H (M) is the Lyapunov function for (1.124); its derivative with respect to time by
virtue of system (1.124) is nonpositive. Indeed,

H (M) = (μM , l� (μMl)) = (μMl, � (μMl)) ≤ 0,

as (μ, �(μ)) = Ḣ x ≤ 0.
When necessary, we can easily further exclude the variables from (1.124) using

the function H (M). The right-hand sides of the obtained equations will be set as
functions of conjugate variables and the function of minimum will again appear
to be the Lyapunov function. We emphasize that (1.125) does not include the
functions H and G in the explicit form at all—they appear only in the cases where
it is necessary to find the relation between variables M and μM or x and μ.

Convexity of H , strictly speaking, was not used anywhere, however, the natural
area of applying the described formalism is in the systems with convex Lyapunov
functions H (x). Otherwise there can exist many extrema.

In Equilibrium Encircling the presented method of excluding fast variables is
also applied to probabilistic systems, the processes of which are described by
Markov ergodic circuits. Probabilistic models turn out to be necessary when it
is important to observe the principle of detailed balancing in a studied system.
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The principle does not follow from the presence of a global equilibrium point
that corresponds to the maximum of total entropy of the system. A condition for
its observance is microreversibility, which can be described as a random Markov
processes.

In Equilibrium Encircling there is also a brief analysis of macroscopic kinetic
(dynamics) equations that are written in a unified form suggested by L.I. Rozonoer
[148]. This form can be used to analyze and solve equations of chemical kinetics,
Markov chains, and dynamics of average values (mathematical expectations).

The general form of the kinetic equations is:

Ṁ j =
[
∂�(X, Y )

∂Y j
− ∂�(X, Y )

∂ X j

]
x=μ(M),y=0

Ṁ = [∇y�(X, Y ) − ∇x�(X, Y )
]

x=μ(M),y=0

⎫⎪⎬
⎪⎭ (1.126)

where �(X, Y ) is kinetic function, and μ(M) is a potential. The derivatives of
(1.126) are taken at the point X = μ(M) = −∇M S, Y = 0. The function S, im-
plying entropy in the problems discussed here in the given formal presentation, is
called a “structural function”.

For the equations of chemical kinetics with kinetic law (1.101), the function �

is represented as a sum by stages
∑

s
�s

�s(X, Y ) = V (X + Y )ϕs(X + Y ) ·

⎛
⎜⎜⎜⎜⎝

exp

(∑
j

(
αs j X j + βs j Y j

))

+ exp

(∑
j

(
βs j X j + αs j Y j

))
⎞
⎟⎟⎟⎟⎠ (1.127)

where V and ϕs are presented as functions of pseudopotentials: V (m, const),
ϕs (m, const), V (X + Y ), ϕs(X + Y ) are the values of these functions at m =
X + Y . Here the function � is symmetrical: �(X, Y ) = �(Y, X ).

Equations (1.126) can be rewritten in the following form:

Ṁ = − [∇z� (Z , μ(M) − Z )]z=μ(M) . (1.128)

From (1.128) follows the statement underlying the method of local potential—a
unique variation principle for the equations of macroscopic dynamics. Let T > 0
and M(τ ) be a smooth function τ on the section [0, T ]. Construct by M(τ ) the
function of ϕτ (Z )–a local potential

ϕτ (Z ) = � (Z , μ (M(τ )) − Z ) + (M(τ ), Z ) . (1.129)

The function M(τ ) is the solution of (1.128) if and only if for any τ ∈ [0, T ] among
the critical points ϕτ (Z ) there is a point Z = μ (M(τ ))such that

[∇zϕτ (Z )]z=μ(M) = 0. (1.130)

This is another form of (1.126). If the local potential ϕτ (Z ) is a convex function
this statement can be a basis for effective computational methods that employ
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well-developed algorithms of convex programming [19, 94, 142]. Particularly this
relates to the problem of search for a steady state. The point M is fixed for (1.126)
if and only if among the critical points of the function

ϕsτ (Z ) = � (Z , μ(M) − Z ) (1.131)

there is a point Z = μ(M) : [∇zϕsτ (Z )]z=μ (M) = 0.

In Equilibrium Encircling examples are given of the use of equations (1.126) and
the method of local potential for the analysis of linear laws of conservation, law of
mass action, equations of chemical kinetics, Markov chains and average values, and
the relation of microreversibility with nonlinear Onsager reciprocal relationships.
Three conditions of “thermodynamic character” have been formulated for regular
(with concave S(M) and convex �(x, y)) systems: existence of the Lyapunov
function, uniqueness and stability of the equilibrium.

Localization of Steady States of Open Systems

This problem addressed in Chapter 6 of Equilibrium Encircling is of special interest
from the standpoint of this book. Indeed, most of the natural and technological
systems that make up the subject matter of the studies discussed here are open
systems. In order to study the systems by models of closed systems presented
in subsequent chapters it is necessary to understand the Equilibrium Encircling
chapter abstracted below.

For closed systems with an equilibrium environment, thermodynamic Lyapunov
functions can be constructed. Provided the functions are convex and the values of
balances are fixed, there is only one positive equilibrium point. If a system and
an equilibrium environment exchange matter, the situation does not essentially
change. The Lyapunov function can be constructed again and so on. Dynamics
can change qualitatively if the studied system exchanges matter or energy with the
nonequilibrium environment. Here, it is naturally supposed that the environment is
a rather big system whose state, practically speaking, does not change on the time
intervals of interest to us. Otherwise, if we were to combine the system with its
environment we would obtain an isolated system tending toward its equilibrium.

Consider homogeneous and heterogeneous open systems with V = const that
exchange matter and energy with the nonequilibrium environment whose state is
supposed to be constant.

First, write the equations of change in composition and energy with time for the
homogeneous system

ẋ = V
∑

s

γsws(c, T ) + υentcent − υoutcout, (1.132)

U̇ = ϕ (Tent − T ) + υentu (centTent) − υoutu(c, T ), (1.133)

where υ is flow rate; c is concentration; ϕ is coefficient of heat transfer; u is internal
energy density; T = T (x, U, V ); indices “ent” and “out” refer to the input and
output flows, respectively.
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Equations (1.132) and (1.133) are written with the assumption of ideal mix-
ing (continuous stir), which will be assumed later, as well. Under the isothermal
conditions we can assume T = Tent and neglect equation (1.133).

According to the written equations all the substances are removed from the sys-
tem with the same rate. For applications, however, an important case is one in which
a part of the substances exists only inside the system is important. Heterogeneous-
catalytic systems can be a good example of this. In this case we can distinguish
in the system two groups of substances and three groups of reactions: reactions
inside the first group of substances (taking part in the mass transfer to the envi-
ronment); reactions with participation of substances of both groups and reactions
inside the second group (not going beyond the system). It is natural to suppose that
the substances of the first and second groups form different phases. Sometimes it
makes sense to set off the third phase, i.e., the phase of an interface between the
first two.

We mark the values relating to the first group of substances with superscript 1
and those relating to the second group by superscript 2 to write

ẋ1 = V 1
∑

s

γ 1
s w1

s

(
c1, T

) + V 12
∑

σ

γ 12
σ1w

12
σ

(
c1, c2, T

) + υentc
1
ent − υoutc

1,

ẋ2 = V 12
∑

σ

γ 12
σ2w

12
σ

(
c1, c2, T

) + V 2
∑

z

γ 2
z w2

z

(
c2, T

)
, (1.134)

U̇ = ϕ (Tent − T ) + υentu
1
(
c′

ent, Tent

) − υoutu
1 (c, T ) ,

where
(
γ 12

σ1, γ
12
σ2

)T
is a stoichiometric vector of the stage that involves the sub-

stances of both groups; γ 12
σ1 is made up of stoichiometric coefficients of the first

group; γ 12
σ2 is made up of stoichiometric coefficients of the second group; V 12

characterizes the region of phase contact; subscripts s, z, σ relate to reactions in
the first phase, the second phases, and to reactions that involve substances of both
phases, respectively.

The particular cases (1.134) in which flow rates are large is considered most
often. Here, it is normally supposed that c1 = cent = const, T = Tent = const and
the subsystem (1.134) for c2 is written separately:

ẋ2 = V 12
∑

σ

γ 12
σ2w

12
σ

(
c1, c2, T

) + V 2
∑

z

γ 2
z w2

z

(
c2, T

)
. (1.135)

It is well known that in the systems described by equations (1.132)–(1.135)
there can be several steady states. The thermodynamic analysis does not allow
their exact number to be determined or even their approximate number to be
assessed. It is only possible to indicate the region that contains all steady states.
This region is sought based on the following simple considerations. The terms in the
right-hand sides of the equations (1.132)–(1.134) are divided into two groups: the
“thermodynamic” terms, which do not include the transfer rates, and the “transfer”
terms, which do include them. The thermodynamic terms contribute negatively to
the derivative of the thermodynamic Lyapunov function, therefore, at a stationary
point, the contribution of the “transfer” terms to the derivative should be positive.
These considerations should be supplemented by the analysis of balance relations.
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To study the system (1.132), (1.133) we choose the free Helmholtz energy divided
into RTent as the Lyapunov function G:

G = U − TentS(x, U, V )

RTent

.

The derivative of G due to (1.132) and (1.133) is

Ġ = −V
∑

s

ws ln
w+

s

w−
s

− ϕ (T − Tent)
2

RT Tent

+
∑

j

m j (c, T )
(
υentc jent − υoutc j

)

+ (T − Tent) υentu(c, T )

centTent

− υoutu(c, T )

RT Tent

(1.136)

In the steady state Ġ = 0, therefore, for any stationary point
(
c0, T 0

)
∑

j

m j
(
c0, T 0

) (
υentc jent − υoutc

0
j

)
+ (

T 0 − Tent

)
(υentu (cent, Tent) −υoutu

(
c, T 0

)) ≥ 0 (1.137)

The inequality (1.137) provides an estimate of the region of steady states of
the system. In the stationary point both ẋ = 0 and U̇ = 0 and the contributions of
thermodynamic terms of ẋ and U̇ to Ġ are negative; therefore, instead of (1.137),
two inequalities can be written:∑

j

m j
(
c0, T 0

) (
υentc jent − υoutc

0
j

) ≥ 0, (1.138)

(
T 0 − Tent

) (
υentu (cent, Tent) − υoutu

(
c, T 0

)) ≥ 0. (1.139)

The inequality (1.139) means that flow of energy transferred by the material
flow and the flow related to heat conductivity have different signs. This is obvious
and follows from the energy conservation law. The inequality (1.138) is more
interesting. Its physical sense consists of the fact that the entropy flow related to
the material flow is negative. In the steady state the flow of negative entropy from
outside should compensate for the entropy production in the system. Banning
the reactions, i.e., leaving in the initial equations for x only the transfer terms,

the left-hand side of the inequality (1.138) will equal −d S

dτ

1

R
. Indeed, we write

the system of equations

ẋ = υentcent − υoutcout.

We find the derivative of S(x, U, V ):

∂S

∂x j
= −Rm j ,

d S

dτ
= −R

∑
j

m j (c, T )
(
υentc jent − υoutc j

)
.

Here we use the circumstance that, in the steady state, U̇ = 0. Note that the ex-
pression obtained for Ṡ does not coincide with the difference of entropies of input
and output flows. This is due to entropy increase at mixing.
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To find the relationship between υent and υout use the balance relation∑
j

ai j
(
υentc jent − υoutc

0
j

) = 0. (1.140)

which is satisfied in the steady state. Hence,

υout = υent

∑
j

ai j c jent∑
j

ai j c0
j

. (1.141)

For calculations introduce the function f (c, T ) equal to the density of the
Helmholtz energy divided by RT:

f (c, T ) = U − T S

RT V
,

∂ f (c, T )

∂c j
= m j .

Using f , the inequality (1.138) acquires the form

∑
j

(
υent

υout

c jent − c0
j

)
∂ f

(
c0, T 0

)
∂c0

j

≥ 0. (1.142)

The inequality has a simple geometrical sense. Consider the region of concen-
trations c in which f

(
c, T 0

) ≤ f
(
c0, T 0

)
. Draw a hyperplane of support via the

point c0. This hyperplane divides the set of all c into two half-spaces so that in one
of them, ∑

j

(
c j − c0

j

)
m j

(
c0, T 0

) ≥ 0, (1.143)

while in the other, this inequality does not hold. The inequality (1.142) means that
the vector υent

υout
cent lies in the half-space where (1.143) is satisfied.

Note that the convexity of the function f (c, T ) does not guarantee the convexity
of the region of c0 for which (1.142) is satisfied. From (1.142) we can pass to
the inequalities with convex functions if we assume a constant pressure and use
the Gibbs energy G instead of the Helmholtz energy. This substitution provides
conservation of all the intensive values.

Since

G =
∑

j

x jμx j ,

inequality (1.138) can be presented in the form

υent

∑
j

μx j c jent − υout

G(x, T, P)

V
≥ 0. (1.144)

Here the first term is a rate of the free enthalpy inflow to the system with the mixing
losses deducted. The inequality itself means that this inflow exceeds the amount
of free enthalpy carried away by the material flow—part is spent on chemical
reactions.
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For ideal systems∑
j

(
m0

j

(
T 0

) + ln c0
j

) (
υentc jent − υoutc

0
j

) ≥ 0. (1.145)

At fixed T 0, cent, νent and νout, the left-hand side of (1.145) is a concave function
since the matrix of the second derivatives is diagonal with negative elements along
the diagonal:

d2
[(

ln c j + m0
j (T )

) (
υentc jent − υoutc j

)]
dc2

j

= −υentc jent

c2
j

− υout

c j
.

The region of possible values c0 that corresponds to the inequality (1.145) is
convex. This region contains the detailed balancing point ceq that meets the balance
relations ∑

j

ai j

(
υentc jent − υoutc

eq
j

)
= 0. (1.146)

Indeed, the vector with components m j
(
ceq, T 0

)
is orthogonal to all vectors

γ for which
∑

j
ai jγ j = 0. According to (1.146) the scalar product of vector

m j
(
ceq, T 0

)
by the vector with components υentc jent − υoutc

eq
j equals zero and

the point ceq lies on the boundary line of the region set by the inequality (1.145).
All the points that satisfy (1.145) lie on the one and the same side of the hyperplane
of support drawn via ceq. The plane is set by the equation

∑
j

(
c0

j − ceq
j

) [
υentc jent

ceq
j

− υout

(
ln ceq

j + m0
j

(
T 0

) + 1
)]

= 0. (1.147)

This is the consequence of convexity of the region of possible c0 values. Thus,
at given T 0, cent, υent, υout the stationary values of concentrations c0

j should satisfy
the linear inequality

∑
j

(
c0

j − ceq
j

) [
υentc jent

ceq
j

− υout

(
ln ceq

j + m0
j

(
T 0

) + 1
)]

≥ 0. (1.148)

We can interpret (1.148) as follows: in the continuous stir flow reactor (CSFR),
the steady state should lie on the same side of equilibrium as the input mixture.
The stationary equilibrium detour in such a reactor is impossible. Input mixture

composition here is by the vector
υent

υout

cent. It also belongs to the boundary line of

the region given by the inequality (1.145), for υentc jent − υoutc j = 0 at all j . We
can write the analog of (1.148) having found the hyperplane of support at the point
υent

υout

cent. This hyperplane is set by the equation

∑
j

(
c0

j − υent

υout

c jent

) (
ln

υent

υout

c jent − m0
j

(
T 0

)) = 0. (1.149)
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For any steady state of c0 the linear inequality∑
j

(
c0

j − υent

υout

c jent

) (
ln

υent

υout

c jent − m0
j

(
T 0

)) ≤ 0. (1.150)

is satisfied.
The preceding can be interpreted as follows: The steady state of the homoge-

neous CSFR lies on the same side of the input mixture as the equilibrium.
Summing up the analysis of the inequalities (1.138), (1.139), (1.145), (1.148)

and (1.150), we note that at the given υent, υout and T 0 the steady state of the
homogeneous CSFR belongs to a set specified by the inequalities (1.138) and
(1.139). Its special case (1.145) for chemically ideal systems is determined by
the convex set. It contains the vector of equilibrium concentrations ceq and the

vector
υent

υout

c jent. These vectors lie on the boundary line of the set and for them the

inequalities (1.138) and (1.139) become equalities. The stationary state lies in the

vicinity of ceq at high rates of chemical reactions and near
υent

υout

c jent, at high flow

rates.
Akramov and Yablonsky found that at the given functions of ws(c, T ) and high

enough flow rates the steady state of the homogeneous CSFR is unique and stable:
At a place “very far” from the equilibrium the homogeneous system with ideal
mixing behaves in the same manner as in the vicinity of it.

To analyze steady states of the heterogeneous CSFR we can use the equation
(1.134) and write the inequality∑

j

m1
j

(
c0, T 0

) (
υentc

1
jent − υoutc

01
j

) ≥ 0, (1.151)

which, like similar inequalities for a homogeneous system, means that the en-
tropy flow from the environment to the system is negative. The concentrations
of substances of the second phase can enter into (1.151) only via dependence of
m1

j on them. The existence of such dependence seems to be an extremely rare
situation.

The relations of balances in the incoming flow and steady state are described in
a way similar to (1.140):∑

j

a1
i j

(
υentc

1
jent − υoutc

01
j

) = 0, (1.152)

where c01 is a vector of stationary concentrations of the first phase.
Here, however, there is a distinction from homogeneous systems. The relations

(1.152) contain the balance coefficients of substances of the first phase only and
already are not as simple as (1.140). Indeed, the phases exchange the matter, and
in the balance relations for a closed system the quantities of substances in different
phases are summed up with relevant coefficients.

The boundary line of a set of concentrations that was given by the inequalities
(1.151) contains an equilibrium point c1eq that is determined from the balance re-
lations (1.152) and chemical equilibrium conditions. Note that the concentrations
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of substances of the second group enter into neither the inequality (1.151) nor
the equation (1.152) nor the composition equilibrium condition. All the calcula-
tions can be performed as if there were no second phase. It is well known that
at equilibrium between phases the composition of each phase is equilibrium. In
heterogeneous catalytic reactions the catalysis does not shift the complete equilib-
rium point. As we see both equilibrium and thermodynamic estimations of steady
states are not shifted by catalysis and, in the general case, by interaction of phases.
For chemically ideal systems in the steady state of CSFR, the composition of the
phase whose flow goes through the reactor cannot overcome the equilibrium, i.e.,
we can write the inequality of the form (1.148).

At first sight it seems strange that the composition cannot be assessed in a similar
way for a phase that is neither input to reactor nor output from it. It seems that the
possible changes of this composition are more arbitrary, at least from the viewpoint
of thermodynamics. Indeed, if the exchange mechanism, i.e., the list of elementary
reactions with participation of substances of both phases, is unknown, then it is
difficult to assess the possible stationary values of c2 by thermodynamics.

If the reaction mechanism is known, then it is possible for us to more accurately
assess the region of steady states of an open system. In the assumption of a stage-
by-stage coordination of the thermodynamic and kinetic laws, thermodynamics
allows one to determine the directions of all the elementary stages at each point. A
special part here is played by the surfaces of stage equilibria that are set by linear
equations relative to the chemical potentials (γ, μx ) = 0.

Let us consider first the system of equations (1.135). At fixed c1 and T or each
σ , it is true that

w12
σ

(
c1, c2, T

)
> 0, if

(
γ 12

σ1, μx1

) + (
γ 12

σ2, μx2

)
< 0,

w12
σ

(
c1, c2, T

)
< 0, if

(
γ 12

σ1, μx1

) + (
γ 12

σ2, μx2

)
> 0, (1.153)

where μx1, μx2 are vectors of chemical potentials of substances of the first and
second groups, respectively. In the assumption that μx1 is a function of c1 and
T , we have that the scalar product

(
γ 12

σ1, μx1

)
at set c1 and T is a constant value.

Denote it by δσ .
Similarly to (1.153) the signs of rates w12

z

(
c2, T

)
are determined. For each z

w2
z

(
c2, T

)
> 0, if

(
γ 2

z , μx2

)
< 0,

w2
z

(
c2, T

)
< 0, if

(
γ 2

z , μx2

)
> 0. (1.154)

The right-hand side of the equations (1.135) is a sum with nonnegative coeffi-
cients of the vectors γ 12

σ2sign(w12
σ ), γ 2

z sign(w2
z ) at all σ , z. The function sign(w) = 1

if w > 0; sign(w) = −1 if w < 0; sign(w) = 0 if w = 0. Therefore, the coefficient
in (1.135) at γ can be rigorously positive when w = 0. Thus, the right-hand part
of (1.135) can always be represented as a sum with positive coefficients of the
vectors γ 12

σ2sign(w12
σ ), γ 2

z sign(w2
z ).
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Consider c02 to be a stationary point of (1.135), then there is such a set of positive
numbers λσ > 0, λz > 0 for which, in this point,∑

σ

λσ γ 12
σ2sign(w12

σ ) +
∑

z

λzγ
2
z sign(w2

z ) = 0. (1.155)

This statement allows inversion: if, for the given point c02 there are positive
numbers λσ , λz such that conditions (1.155) are met, then there are such rate
functions wσ and wz coordinated with thermodynamics for which c02 is a steady
state. For the kinetic law of mass action, for example, a stationary character of
c02 can be obtained by an appropriate rate constant change that does not affect the
equilibrium constants.

The equality (1.155) contains only the signs of the function w. They can be
determined if we know the stoichiometric vectors and chemical potentials (see
(1.153) and (1.154)). The simplest way to determine them is to choose as the base
coordinates the chemical potentials μx2 rather than the concentrations of c2. At
fixed c1 and T a set of hyperplanes (1.153), (1.154) is used to divide the space
of chemical potentials into sets that have rates of stages with a constant sign. The
number of these sets is finite and they are given by the systems of linear inequalities
and equations of the form

δσ + (
γ 12

σ2, μx2

) ≥≤ 0,
(
γ 2

z , μx2

) ≥≤ 0. (1.156)

For each arrangement of signs in (1.156) we can answer the question if a set of
positive numbers λσ , λz exists such that (1.155) is true at a given arrangement of
signs. If such a set exists, then any point of the set determined by the inequalities
and equations (1.156) can be a steady state; otherwise, no point of this set can be
one.

The notion of signature is introduced to construct sets of stationary points.
The signature is a set of numbers εσ , εz such that for any σ , z there will be
εσ , εz = 1, −1, or 0. Each signature ε is bound to a set of those μx2 for which at
all σ , z

sign
(
δσ + (

γ 12
σ2, μx2

)) = −εσ , sign
(
γ 2

z , μx2

) = −εz . (1.157)

Denote this set as Mε.
For each signature ε we can find out if there positive numbers λσ , λz such that∑

σ

λσ γ 12
σ εσ +

∑
z

λzγ
2
z εz = 0. (1.158)

Denote as E the set ε for which such combinations of λσ and λz exist. The set
of all possible values of chemical potentials μx2 in the stationary points is

M0 =
⋃
ε∈E

Mε. (1.159)

The set M0 can be considered an analog of the set of equilibrium points for the
system (1.155). It is not always convex but it is a combination of a finite number
of convex sets Mε.
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To refer the region of potential stationary states to the inequalities and equations
that describe M it is necessary to add corresponding balance relationships. Here,
unfortunately, the linearity is lost: inequalities and equations that describe M0 are
linear in coordinates μx2, and balance relationships are linear in coordinates c2.

Let us pass to the analysis of the homogeneous reactor of ideal mixing
(1.132), (1.133). For each stage the equilibrium surface is given by the equation
(γ, μx ) = 0, a sign(w) = −sign (γ, μx ) . We let υent, cent, Tent, υout, and T be fixed,
and we consider only the equations (1.132) for x . Assumeing υent = υout = υ, we
do not lose generality as the equations contain only the product υentcout. The value
of concentrations c0can be stationary only in the case of such numbers λs > 0 that
in the point c = c0: ∑

s

λsγssign(ws) + (
cent − c0

) = 0. (1.160)

The set of all sums of vectors γssign(ws) with positive coefficients for each
point c0 forms a convex cone. The sets of the c0, to which the same sets of vectors
γssign(ws) correspond, are set by finite systems of equations and inequalities of
the form

n∑
j=1

(γs) j μx j = (
γs, μx

) ≥≤ 0, (1.161)

that are linear in the coordinates μx .
Compare with each signature εs a “compartment,” the set Mε specified in the

coordinates μx by a linear system of equations and inequalities

sign (γs, μx ) = −εs . (1.162)

In the compartment Mε we have sign(ws) = εs for all s. For some ε the system
(1.162) may turn out to be incompatible and the set Mε may appear to be empty.
Each signature ε is corresponds to a convex set Qε made up by all the sums of
vectors γsεs with positive coefficients: q ∈ Qε if and only if there is a combination
of positive numbers λs such that q = ∑

s
λsγsεs . We describe Qε by linear equations

and inequalities for all ε such that Mε �= ∅. If the point c0 belongs to Mε, it can be
stationary only when c0 − cent ∈ Qε , i.e., if vector c0 − cent satisfies the system
of linear equations and inequalities that presets Qε.

At a given cent for each ε we consider the set of those c ∈ Mε for which c0 −
cent ∈ Qε. This set can be presented in the form Mε ∩ (cent + Qε). It is given by two
systems of equations and inequalities. The first system that describes Mε is linear
in coordinates μx ; the second one that expresses the belonging of c0 − cent to the
set Qε is linear in coordinates c. The aggregate of all possible stationary states is⋃

ε

[Mε ∩ (cent + Qε)]. (1.163)

A detailed analysis of the example of constructing M0 for the homogeneous
CSFR is presented below.
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The heterogeneous CSFR (1.134) is considered in a fashion similar to the pre-
ceding discussion. For each stage, the scalar product determines the sign of the
stage’s rate {γ, μx } and the possibilities of compensating the flow by chemical
reactions are studied.

In Equilibrium Encircling the principle underlying the assessments of the set
of stationary states is called a principle of swan, crab and pike∗—the SCP princi-
ple. The sense of this name is in the fact that points are found in which different
processes “pull” into different sides in the way that the sum of directing vec-
tors that have positive coefficients equals zero. This condition is necessary for
“the carrige to stay there” for the stationary state of the composition. In [58]
the SCP principle is extended to more complicated cases of open system be-
havior when, as τ → ∞, the stable auto-oscillations and other limiting modes
occur.

An Example of Analysis of Possible Stationary States

We demonstrate the construction of the set M0 for the CFSR (1.132), (1.133) on
the elementary example of monomolecular reactions of isomerization.

We let the ideal system be under the isothermal conditions and consist of three
substances A1, A2, A3 obeying one balance relations

x1 + x2 + x3 = const.

Suppose that the mechanism of reaction is A1 � A2 � A3 � A1. For simplicity,
the equilibrium constants for all stages will be taken to be equal to unity, i.e., the
point x1 = x2 = x3 = xeq

j is an equilibrium point. We write the kinetic equation

ċ =
3∑

s=1

γsws + υ (cent − c)

V
, (1.164)

where γ1 = (−1, 1, 0)T ; γ2 = (0, −1, 1)T ; γ3 = (1, 0, −1)T .
In time

b =
3∑

j=1

c j →
3∑

j=1

c jent = bent.

Therefore, we limit ourselves by the study of motion in D (bent), the triangle
c j > 0, c1 + c2 + c3 = bent. For each three-valued signature ε = (ε1, ε2, ε3), ε j =
0, ±1, the set Mε can be determined in D (bent)by the system of inequalities and
equations sign(w j ) = ε j . Of 33 = 27 signatures, only 13 are determined by the
nonempty sets Mε. Among them 6 are two-dimensional, 6 are one-dimensional

∗Transtator’s note: In a classical Russian tale by I. Krylov the three creatures failed to move
a carriage, pulling it in different directions.
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and 1 consists of one point:

1) ε = (1, 1, −1), c1 > c2, c2 > c3, c3 < c1;
2) ε = (−1, 1, −1), c1 < c2, c2 > c3, c3 < c1;
3) ε = (−1, 1, 1), c1 < c2, c2 > c3, c3 > c1;
4) ε = (−1, −1, 1), c1 < c2, c2 < c3, c3 > c1;
5) ε = (1, −1, 1), c1 > c2, c2 < c3, c3 > c1;
6) ε = (1, −1, −1), c1 > c2, c2 < c3, c3 < c1;
7) ε = (1, 0, −1), c1 > c2, c2 = c3, c3 < c1;
8) ε = (0, 1, −1), c1 = c2, c2 > c3, c3 < c1;
9) ε = (−1, 1, 0), c1 < c2, c2 > c3, c3 = c1;

10) ε = (−1, 0, 1), c1 < c2, c2 = c3, c3 > c1;
11) ε = (0, −1, 1), c1 = c2, c2 < c3, c3 > c1;
12) ε = (1, −1, 0), c1 > c2, c2 < c3, c3 = c1;
13) ε = (0, 0, 0), c1 = c2 = c3.

The other signatures correspond to incompatible systems of inequalities. All the
equations and inequalities are linear in coordinates c as the stages are monomolec-
ular and the system is ideal.

Each of the 13 signatures ε corresponds to the set Qε, an aggregate of
linear combination with positive coefficients of vectors γsεs . The compart-
ments Mε and sets Qε are shown in Fig. 1.3. For ε = (0, 0, 0) obviously

Figure 1.3. Compartments Mε , sets Qε (inside the dashed angles).
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Figure 1.4. The sets cent + Qε (horizontal dashing) and compartment Mε (vertical dash-

ing) for signatures. a. (1, 1, –1), b. (–1, 1, –1), c. (–1, 1, 1), d. (–1, –1, 1), e. (1, –1, 1),

f. (1, –1, –1).

Qε = {0}. For the remaining ε the sets Qε are corners on the plane that do
not include boundary axes. Let concentrations c jent be bound by the inequal-
ity c1ent > c2ent > c3ent. The case of another arrangement of inequalities implies
the change in the numbers. The point c0 of the compartment Mε can be sta-
tionary at some relationship between the rate constants and flow velocity if
c0 − cent ∈ Qε. For each compartment Mε consider the set cent + Qε. Combina-
tion for all ε intersections of Mε ∩ (cent + Qε) is the set of all possible stationary
states.

The sets cent + Qε for signatures that do not contain zeros are presented in
Fig. 1.4, and for signatures that contain zero they are shown in Fig. 1.5. If, as
is supposed, c1ent > c2ent > c3ent (cent ∈ Mε, ε = (1, 1, −1)), the set cent + Qε

does not intersect Mε for ε = (−1, 1, 1), (−1, −1, 1), (1, −1, 1) (Fig. 1.4c– e); and
ε = (−1, 1, 0), (−1, 0, 1), (0, −1, 1), (−1, 1, 0) (Fig. 1.5c– f ). For ε = (1, 1, −1)
the intersection Mε ∩ (cent + Qε) is not empty (Fig. 1.4a) at all cent that meet the
assumption made: c1ent > c2ent > c3ent. Depending on the relationship between

c2ent and ceq = c1ent + c2ent + c3ent

3
the set cent + Qε can intersect Mε at four more

different ε. Indeed, if c2ent < ceq, which corresponds to the case shown in Figs. 1.4,
1.5, then Mε ∩ (cent + Qε) �= ∅ for ε = (1, −1, −1) (Fig. 1.4e); and ε = (1, 0, −1)
(Fig.1.5a); if c2ent > ceq, then Mε ∩ (cent + Qε) �= ∅ for ε = (0, 1, −1). Finally, if
c2ent = ceq, then Mε ∩ (cent + Qε) = ∅ for all ε except for the above ε = (1, 1, −1).
The regions of possible stationary states in the three described cases are shown in
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Figure 1.5. Sets cent + Qε (horizontal dashing) and compartments Mε (bold sections) for

signatures. a. (1, 0, –1), b. (0, 1, –1), c. (–1, 1, 0), d. (–1, 0, 1), e. (0, –1, 1), f. (1, –1, 0).

Figs. 1.6a–c. These regions are open and not always convex (Fig. 1.6a, b). The
input mixture cent in all the figures is shown with a circle.

Certainly a search for the thermodynamic estimations of sets of stationary states
for the systems of large dimensionality encounters severe computational difficul-
ties. Construction of an SCP-set calls for the study of a great number of systems
of linear inequalities relative to chemical potentials.

1

23 3 2

1 1

3 2

Figure 1.6. Sets of possible stationary states M0 for the homogenous CSFR (dashed).

a. c2ent < ceq; b. c2ent = ceq; c. c2ent > ceq; dashed line is set by the equality c2 =
ceq (c1ent > c2ent > c3ent).
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To conclude this section we would like to note, that since the 1960s thermo-
dynamic analysis of open system kinetics—with its main points briefly discussed
in the sixth chapter of Equilibrium Encircling—has been developing in the works
of a number of the authors: F. Horn [47, 71], M. Feinberg [44, 45, 46, 47], P. M.
Bowen [24], B. D. Coleman [29], D. Glasser [57, 70], D. D. Hildebrant [46, 57, 70],
J. C. Keck [98], and V. N. Parmon [136] et al.




